Skip to content

Code release for "Semantic Segmentation-Assisted Instance Feature Fusion for Multi-level 3D Part Instance Segmentation" (Computational Visual Media, 2022)

License

Notifications You must be signed in to change notification settings

isunchy/3d_instance_segmentation

Repository files navigation

Semantic Segmentation-Assisted Instance Feature Fusion for Multi-level 3D Part Instance Segmentation

comparison

Introduction

This work is based on our CVM paper. We proposed a new method for 3D shape instance segmentation. You can check our project webpage for a quick overview.

Recognizing 3D part instances from 3D point cloud is crucial for 3D structure and scene understanding. Many learning-based approaches simply utilize semantic segmentation and instance center prediction as training tasks and fail to further exploit the inherent relationship between shape semantics and part instances. In this paper, we present a new method for 3D part instance segmentation. Our method exploits semantic segmentation for fusing nonlocal instance features for instance center prediction and further enhances the fusion scheme in a multi- and cross-level way. We also propose a semantic region center prediction task for training and leverage the prediction results to improve the clustering of instance points. Our method outperforms existing methods with a large-margin improvement in the PartNet benchmark. We also demonstrate that our feature fusion scheme can be applied to other existing methods to improve their performance in indoor scene instance segmentation tasks.

In this repository, we release the code and data for training the networks for 3d shape instance segmentation.

Citation

If you use our code for research, please cite our paper:

@article{sun2022ins,
  title     = {Semantic Segmentation-Assisted Instance Feature Fusion for Multi-level 3D Part Instance Segmentation},
  author    = {Sun, Chunyu and Tong, Xin and Liu, Yang},
  journal   = {Computational Visual Media},
  year      = {2022},
  publisher = {Springer}
}

Setup

    docker pull tensorflow/tensorflow:1.15.0-gpu-py3
    docker run -it --runtime=nvidia -v /path/to/3d_instance_segmentation/:/workspace tensorflow/tensorflow:1.15.0-gpu-py3
    cd /workspace
    pip install tqdm scipy scikit-learn --user

Experiments

Data Preparation

Refer to the folder data_preprocessing for generating the training and test data.

And we also provide the Baidu drive link for downloading the training and test datasets:

Training data

Training

To start the training, run

    $ python 3DInsSegNet.py --logdir log/test_chair --train_data data/Chair_level123_train_4489.tfrecords --test_data data/Chair_level123_test_1217.tfrecords --test_data_visual data/Chair_level123_test_1217.tfrecords --train_batch_size 8 --test_batch_size 1 --max_iter 100000 --test_every_iter 5000 --test_iter 1217 --test_iter_visual 0 --cache_folder test_chair --gpu 0 --n_part_1 6 --n_part_2 30 --n_part_3 39 --level_1_weight 1 --level_2_weight 1 --level_3_weight 1 --phase train --seg_loss_weight 1 --offset_weight 1 --sem_offset_weight 1 --learning_rate 0.1 --delete_0 --notest_visual --depth 6 --weight_decay 0.0001 --stop_gradient --category Chair

Test

To test a trained model, run

    $ python 3DInsSegNet.py --logdir log/test_chair --train_data data/Chair_level123_train_4489.tfrecords --test_data data/Chair_level123_test_1217.tfrecords --test_data_visual data/Chair_level123_test_1217.tfrecords --train_batch_size 8 --test_batch_size 1 --max_iter 100000 --test_every_iter 5000 --test_iter 1217 --test_iter_visual 0 --cache_folder test_chair --gpu 0 --n_part_1 6 --n_part_2 30 --n_part_3 39 --level_1_weight 1 --level_2_weight 1 --level_3_weight 1 --phase test --seg_loss_weight 1 --offset_weight 1 --sem_offset_weight 1 --learning_rate 0.1 --ckpt weight/Chair --delete_0 --notest_visual --depth 6 --weight_decay 0.0001 --stop_gradient --category Chair

We provide the trained weights used in our paper:

Weights

License

MIT Licence

Contact

Please contact us (Chunyu Sun [email protected], Yang Liu [email protected]) if you have any problem about our implementation.

About

Code release for "Semantic Segmentation-Assisted Instance Feature Fusion for Multi-level 3D Part Instance Segmentation" (Computational Visual Media, 2022)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages