forked from Neo-X/RL-Tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SamplingExample.py
201 lines (176 loc) · 6.09 KB
/
SamplingExample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from game.MapGame import Map
from BallGame import BallGame
import random
import numpy as np
import math
import cPickle
import json
import os
import copy
from model import RLLogisticRegression.RLLogisticRegression
from model import NeuralNet.NeuralNet
from RLNeuralNetwork import RLNeuralNetwork
from RLNeuralNetworkDQ import RLNeuralNetworkDQ
from RLDeepNet import RLDeepNet
from DeepCACLA import DeepCACLA
from DeepDPG import DeepDPG
import sys
from RL_visualizing import *
from RLVisualize import RLVisualize
from model import ExperienceMemory.ExperienceMemory
import matplotlib.pyplot as plt
def eGreedy(pa1, ra2, e):
"""
epsilon greedy action select
pa1 is best action from policy
ra1 is the random action
e is proabilty to select random action
0 <= e < 1.0
"""
r = random.random()
if r < e:
return ra2
else:
return pa1
def eOmegaGreedy(pa1, ra1, ra2, e, omega):
"""
epsilon greedy action select
pa1 is best action from policy
ra1 is the noisy policy action action
ra2 is the random action
e is proabilty to select random action
0 <= e < omega < 1.0
"""
r = random.random()
if r < e:
return ra2
elif r < omega:
return ra1
else:
return pa1
def randomExporation(explorationRate, actionV):
out = []
for i in range(len(actionV)):
out.append(actionV[i] + random.gauss(actionV[i], explorationRate))
return out
def randomUniformExporation(bounds):
out = []
for i in range(len(bounds[0])):
out.append(np.random.uniform(bounds[0][i],bounds[1][i],1)[0])
return out
def clampAction(actionV, bounds):
"""
bounds[0] is lower bounds
bounds[1] is upper bounds
"""
for i in range(len(actionV)):
if actionV[i] < bounds[0][i]:
actionV[i] = bounds[0][i]
elif actionV[i] > bounds[1][i]:
actionV[i] = bounds[1][i]
return actionV
def collectExperienceActionsContinuous(experience, action_bounds):
i = 0
while i < experience.history_size():
game.reset()
t=0
while not game.reachedTarget():
if (t > 31):
game.reset()
t=0
state = game.getState()
action = game.move(random.choice(action_selection))
# randomAction = randomUniformExporation(action_bounds) # Should select from 8 original actions
# action = clampAction(randomAction, action_bounds)
reward = game.actContinuous(action)
resultState = game.getState()
# tup = ExperienceTuple(state, [action], resultState, [reward])
# Everything should be normalized to be between -1 and 1
reward_ = (reward+(max_reward/2.0))/(max_reward*0.5)
# reward_ = (reward)/(max_reward)
# reward_ = (reward+max_reward)/(max_reward)
experience.insert(norm_state(state, max_state), [action], norm_state(resultState, max_state), [reward_])
i+=1
t+=1
print "Done collecting experience from " + str(experience.samples()) + " samples."
return experience
if __name__ == "__main__":
file = open(sys.argv[1])
settings = json.load(file)
file.close()
epsilon = 0.45 # It is important to have some space between these values especially now that the experience buffer starts loaded with random actions
omega = 0.8
p = 1.0
max_reward = 1.0
game = BallGame()
game.init([1],[1],[1])
action_space_continuous = True
max_training_steps = 100
action_bounds = settings['action_bounds']
action_bounds = [[-0.8,0.1],[0.8,1.0]]
data_folder = settings['data_folder']
num_actions=8
action_selection = range(num_actions)
init_state=[]
result_state=[]
action_path=[]
rewards=[]
initial_state = [0.5,0.05]
action=0
reward=0
step=0
while step < max_training_steps:
step+=1
game.reset()
game.setState(initial_state)
state = game.getState()
print "State: " + str(state)
init_state.append(copy.deepcopy(state))
# pa = model.predict([norm_state(state, max_state)])
pa = [0,0]
action = randomUniformExporation(action_bounds) # Completely random action
print action
# action = [1,1]
# reward = game.actContinuous(action)
run = True
print "Acting: " + str(action)
action_path_tmp=[]
game._box.state[0][3] = action[1]
game._box.state[0][2] = action[0]
for i in range(1000):
run = game.animate(i)
# print box.state
# game.update()
action_path_tmp.append(copy.deepcopy(game.getState()))
if not run:
reward = game.rewardSmooth(4.0)
break
action_path.append(np.reshape(action_path_tmp, (-1,2) ) )
resultState = game.getState()
# tup = ExperienceTuple(state, [action], resultState, [reward])
# Everything should be normalized to be between -1 and 1
# reward_ = (reward+(max_reward/2.0))/(max_reward*0.5)
result_state.append(copy.deepcopy(resultState))
rewards.append(reward)
# print result_state
game.finish()
init_state = np.array(init_state)
result_state = np.array(result_state)
action_path = np.array(action_path)
rewards = np.array(rewards)
# print init_state, result_state
plt.plot(init_state[:,0],init_state[:,1],'bo', ms=6)
plt.plot(result_state[:,0],result_state[:,1],'ro', ms=6)
# print "Action Paths: " + str(action_path)
# print "Action Paths[0]: " + str(action_path[0])
# print "Action Paths len: " + str(len(action_path))
print rewards
# scaled_rewards = (rewards/np.max(rewards))
# print scaled_rewards
rewards = np.power(rewards,4)
print rewards
for p in range(len(action_path)):
score = rewards[p]
colour=(score, 0.0, 1.0-score)
plt.plot(action_path[p][:,0],action_path[p][:,1], color=colour)
plt.show()