This work is done to help understand the full Reiforcement Learning pipeline. I found a lack of simple, easy to understand examples online to illustrate the RL process and how Neural Networks are used as a good function aproximator.
- sudo apt-get -y install liblapack3 liblapack-dev libblas3 libblas-dev gfortran libspqr1.3.1 libcholmod2.1.2 libmetis5 libmetis-dev libcolamd2.8.0 libccolamd2.8.0 libcamd2.3.1 libamd2.3.1 libx11-dev python-dev
- pip install Theano
- pip install matplotlib
- pip install Lasagne==0.1
- sudo apt-get install python-pyode
- sudo apt-get install python-opengl
You need ffmpeg
- sudo add-apt-repository ppa:mc3man/trusty-media
- sudo apt-get update
- sudo apt-get install ffmpeg gstreamer0.10-ffmpeg
$ python RunGame.py Deep.json
$ python RunBallGame1D.py settings/BallGame1D/DeepCACLA.json
The different example games.
python RunBallGame1D.py settings/BallGame1D/DeepCACLA.json