Skip to content

Latest commit

 

History

History
115 lines (97 loc) · 4.62 KB

README.md

File metadata and controls

115 lines (97 loc) · 4.62 KB

Kalman Filter Simulation Tutorials

code size repo size

This project is the reorganization of the code in the book Kalman-and-Bayesian-Filters-in-Python and draws on some content in EKF/UKF Toolbox for MATLAB.

English | 简体中文

Goals

  • Provide a set of easy-to-understand introductory tutorials
  • Build a filter simulation toolkit that is friendly to beginners

Requirements

To build the environment, there are 3 options

For option 2&3, you need to run the following command after installation

conda install matplotlib pandas scipy sympy jupyterlab

Then, clone this repo

git clone https://github.com/ivaquero/blog-filters.git

Finally, launch jupyterlab to run the code

cd [this repo] && jupyter lab

Examples

Kit Structure

  • filters: Filter-related module
    • bayes: Bayesian statistics
    • fusion: data fusion
    • ghk: α-β-γ filtering
    • ghq: Gaussian-Hermite numerical integration
    • imm: interactive multiple models
    • kalman_ckf: cubature Kalman filter
    • kalman_ekf: extended Kalman filter
    • kalman_enkf: ensemble Kalman filter
    • kalman_fm: fading-memory filter
    • kalman_hinf: H∞ filter
    • kalman_ukf: unscented Kalman filter
    • kalman: linear Kalman filter
    • lsq: the least squares filter
    • particle: particle filter
    • resamplers: sampler
    • sigma_points: Sigma point
    • smoothers: smoother
    • solvers: equation solvers (such as Runge-Kutta)
    • stats: statistical indicators
    • helpers: auxiliary tools
  • models: Model-related module
    • const_acc: constant acceleration model
    • const_vel: constant velocity model
    • coord_ture: coordinated rotation model
    • singer: Singer model
    • noise: model noise
  • ssmodel*: model base class
  • plots: Plot-related module
    • plot_common: common plot (measurement, trajectory, residual)
    • plot_bayes: Bayes statistical plot
    • plot_nonlinear: nonlinear statistical plot
    • plot_gh: α-β-γ filter plot
    • plot_kf: Kalman filter plot
    • plot_kf_plus: nonlinear Kalman filter plot
    • plot_pf: particle filter plot
    • plot_sigmas: Sigma point plot
    • plot_adaptive: adaptive plot
    • plot_fusion: data fusion plot
    • plot_smoother: smoother plot
  • simulators: Simulation-related module
    • datagen: common data generation
    • linear: linear motion model
    • maneuver: maneuver model
    • radar: ground radar model
    • robot: robot model
    • trajectory: projectile model
  • cfg: Simulation configuration interface
  • clutter: Clutter-related module
  • tracker: Tracking-related module
    • associate: association
    • pda: probabilistic data association
    • estimators: state estimation
    • track*: trackers with association
  • symbol: Symbol derivation module
    • datagen: data generation
    • models: motion model