Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: corrected implementation of where param numpy mean #23477

Merged
merged 8 commits into from
Sep 27, 2023
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions ivy/functional/frontends/numpy/ndarray/ndarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -165,9 +165,9 @@ def any(self, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
def argsort(self, *, axis=-1, kind=None, order=None):
return np_frontend.argsort(self, axis=axis, kind=kind, order=order)

def mean(self, *, axis=None, dtype=None, out=None, keepdims=False, where=True):
def mean(self, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
return np_frontend.mean(
self,
self.ivy_array,
AnnaTz marked this conversation as resolved.
Show resolved Hide resolved
axis=axis,
dtype=dtype,
out=out,
Expand Down
64 changes: 16 additions & 48 deletions ivy/functional/frontends/numpy/statistics/averages_and_variances.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,62 +72,30 @@ def cov(
@handle_numpy_dtype
@to_ivy_arrays_and_back
@from_zero_dim_arrays_to_scalar
def mean(
a,
/,
*,
axis=None,
keepdims=False,
out=None,
dtype=None,
where=True,
):
def mean(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
axis = tuple(axis) if isinstance(axis, list) else axis
if dtype:
a = ivy.astype(ivy.array(a), ivy.as_ivy_dtype(dtype))

ret = ivy.mean(a, axis=axis, keepdims=keepdims, out=out)
if ivy.is_array(where):
ret = ivy.where(where, ret, ivy.default(out, ivy.zeros_like(ret)), out=out)
dtype = dtype or a.dtype if not ivy.is_int_dtype(a.dtype) else ivy.float64
where = ivy.where(where, ivy.ones_like(a), 0)
if where is not True:
a = ivy.where(where, a, 0.0)
sum = ivy.sum(a, axis=axis, keepdims=keepdims, dtype=dtype)
cnt = ivy.sum(where, axis=axis, keepdims=keepdims, dtype=int)
ret = ivy.divide(sum, cnt, out=out)
else:
ret = ivy.mean(a.astype(dtype), axis=axis, keepdims=keepdims, out=out)

return ret
return ret.astype(dtype)


@handle_numpy_out
@handle_numpy_dtype
@to_ivy_arrays_and_back
@from_zero_dim_arrays_to_scalar
def nanmean(
a,
/,
*,
axis=None,
keepdims=False,
out=None,
dtype=None,
where=True,
):
is_nan = ivy.isnan(a)
axis = tuple(axis) if isinstance(axis, list) else axis

if not ivy.any(is_nan):
if dtype:
a = ivy.astype(ivy.array(a), ivy.as_ivy_dtype(dtype))
ret = ivy.mean(a, axis=axis, keepdims=keepdims, out=out)

if ivy.is_array(where):
ret = ivy.where(where, ret, ivy.default(out, ivy.zeros_like(ret)), out=out)

else:
a = [i for i in a if ivy.isnan(i) is False]

if dtype:
a = ivy.astype(ivy.array(a), ivy.as_ivy_dtype(dtype))
ret = ivy.mean(a, axis=axis, keepdims=keepdims, out=out)

if ivy.is_array(where):
ret = ivy.where(where, ret, ivy.default(out, ivy.zeros_like(ret)), out=out)

def nanmean(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
where = ~ivy.isnan(a) & where
ret = mean(a, axis, dtype, keepdims=keepdims, where=where).ivy_array
if out is not None:
out.data = ret.data
return ret


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,9 @@
from ivy_tests.test_ivy.test_frontends.test_numpy.test_manipulation_routines.test_changing_number_of_dimensions import ( # noqa
_squeeze_helper,
)
from ivy_tests.test_ivy.test_functional.test_core.test_statistical import (
_statistical_dtype_values,
)

CLASS_TREE = "ivy.functional.frontends.numpy.ndarray"

Expand Down Expand Up @@ -2766,42 +2769,51 @@ def test_numpy_ndarray_max(
class_tree=CLASS_TREE,
init_tree="numpy.array",
method_name="mean",
dtype_x_axis=helpers.dtype_values_axis(
available_dtypes=helpers.get_dtypes("float"),
min_axis=-1,
max_axis=0,
min_num_dims=1,
force_int_axis=True,
),
dtype_and_x=_statistical_dtype_values(function="mean"),
dtype=helpers.get_dtypes("float", full=False, none=True),
where=np_frontend_helpers.where(),
keep_dims=st.booleans(),
)
def test_numpy_ndarray_mean(
dtype_x_axis,
dtype_and_x,
dtype,
where,
keep_dims,
frontend_method_data,
init_flags,
method_flags,
backend_fw,
frontend,
on_device,
):
input_dtypes, x, axis = dtype_x_axis
input_dtypes, x, axis = dtype_and_x
where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools(
where=where,
input_dtype=input_dtypes,
test_flags=method_flags,
)
if "bfloat16" in input_dtypes + dtype or []:
AnnaTz marked this conversation as resolved.
Show resolved Hide resolved
return
helpers.test_frontend_method(
init_input_dtypes=input_dtypes,
backend_to_test=backend_fw,
method_input_dtypes=input_dtypes,
method_input_dtypes=input_dtypes[1:],
init_all_as_kwargs_np={
"object": x[0],
},
method_all_as_kwargs_np={
"axis": axis,
"dtype": "float64",
"dtype": dtype[0],
"out": None,
"keepdims": keep_dims,
"where": where,
},
frontend=frontend,
frontend_method_data=frontend_method_data,
init_flags=init_flags,
method_flags=method_flags,
rtol_=1e-2,
atol_=1e-2,
rtol_=1e-1,
atol_=1e-1,
on_device=on_device,
)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -223,32 +223,28 @@ def test_numpy_mean(
keep_dims,
):
input_dtypes, x, axis = dtype_and_x
if isinstance(axis, tuple):
axis = axis[0]

where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools(
where=where,
input_dtype=input_dtypes,
test_flags=test_flags,
)

np_frontend_helpers.test_frontend_function(
input_dtypes=input_dtypes,
frontend=frontend,
backend_to_test=backend_fw,
test_flags=test_flags,
fn_tree=fn_tree,
on_device=on_device,
atol=1e-2,
rtol=1e-2,
x=x[0],
axis=axis,
dtype=dtype[0],
out=None,
keepdims=keep_dims,
where=where,
test_values=False,
)
if "bfloat16" not in input_dtypes + dtype or []:
helpers.test_frontend_function(
input_dtypes=input_dtypes,
frontend=frontend,
backend_to_test=backend_fw,
test_flags=test_flags,
fn_tree=fn_tree,
on_device=on_device,
atol=1e-2,
rtol=1e-2,
a=x[0],
axis=axis,
dtype=dtype[0],
out=None,
keepdims=keep_dims,
where=where,
)


# nanmean
Expand Down Expand Up @@ -279,24 +275,23 @@ def test_numpy_nanmean(
input_dtype=input_dtypes,
test_flags=test_flags,
)

np_frontend_helpers.test_frontend_function(
input_dtypes=input_dtypes,
frontend=frontend,
backend_to_test=backend_fw,
test_flags=test_flags,
fn_tree=fn_tree,
on_device=on_device,
rtol=1e-2,
atol=1e-2,
a=a[0],
axis=axis,
dtype=dtype[0],
out=None,
keepdims=keep_dims,
where=where,
test_values=False,
)
if "bfloat16" not in input_dtypes + dtype or []:
helpers.test_frontend_function(
input_dtypes=input_dtypes,
frontend=frontend,
backend_to_test=backend_fw,
test_flags=test_flags,
fn_tree=fn_tree,
on_device=on_device,
rtol=1e-2,
atol=1e-2,
a=a[0],
axis=axis,
dtype=dtype[0],
out=None,
keepdims=keep_dims,
where=where,
)


@handle_frontend_test(
Expand Down
Loading