Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Paddle Frontend: max_pool2d #23493

Merged
merged 5 commits into from
Nov 2, 2023
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 35 additions & 0 deletions ivy/functional/frontends/paddle/nn/functional/pooling.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,6 +100,41 @@ def avg_pool2d(
)


@to_ivy_arrays_and_back
@with_supported_dtypes({"2.5.1 and below": ("float32", "float64")}, "paddle")
def max_pool2d(
x,
kernel_size,
stride=None,
padding=0,
return_mask=False,
ceil_mode=False,
data_format="NCHW",
name=None,
):
if stride is None:
stride = kernel_size
kernel_size = _broadcast_pooling_helper(kernel_size, "2d", name="kernel_size")
padding = _broadcast_pooling_helper(padding, "2d", name="padding")

if data_format not in ["NCHW", "NHWC"]:
raise ValueError(
"Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
"Attr(data_format): %s."
% str(data_format)
)

if data_format == "NHWC" and return_mask:
raise ValueError(
"When setting return_mask to true, data_format must be set to NCHW in"
" API:max_pool2d"
)

return ivy.max_pool2d(
x, kernel_size, stride, padding, data_format=data_format, ceil_mode=ceil_mode
)


@to_ivy_arrays_and_back
@with_supported_dtypes({"2.5.1 and below": ("float32", "float64")}, "paddle")
def max_unpool1d(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -276,6 +276,60 @@ def test_paddle_avg_pool2d(
)


# max_pool2d
@handle_frontend_test(
fn_tree="paddle.nn.functional.pooling.max_pool2d",
dtype_x_k_s=helpers.arrays_for_pooling(
min_dims=4, max_dims=4, min_side=2, max_side=4
),
ceil_mode=st.sampled_from([True]),
data_format=st.sampled_from(["NCHW", "NHWC"]),
)
def test_paddle_max_pool2d(
dtype_x_k_s,
ceil_mode,
data_format,
*,
test_flags,
backend_fw,
frontend,
fn_tree,
on_device,
):
input_dtype, x, kernel, stride, padding = dtype_x_k_s

if data_format == "NCHW":
x[0] = x[0].reshape(
(x[0].shape[0], x[0].shape[3], x[0].shape[1], x[0].shape[2])
)
if len(stride) == 1:
stride = (stride[0], stride[0])
if padding == "SAME":
padding = test_pooling_functions.calculate_same_padding(
kernel, stride, x[0].shape[2:]
)
else:
padding = (0, 0)

if padding == "VALID" and ceil_mode:
ceil_mode = False

helpers.test_frontend_function(
input_dtypes=input_dtype,
test_flags=test_flags,
backend_to_test=backend_fw,
frontend=frontend,
fn_tree=fn_tree,
on_device=on_device,
x=x[0],
kernel_size=kernel,
stride=stride,
padding=padding,
ceil_mode=ceil_mode,
data_format=data_format,
)


# max_unpool1d
@handle_frontend_test(
fn_tree="paddle.nn.functional.max_unpool1d",
Expand Down
Loading