CelebA dataset provides an aligned set img_align_celeba.zip
. However, the size of each aligned image is 218x178, so the faces cropped from such images would be even smaller!
Here we provide a code to obtain higher resolution face images, by cropping the faces from the original unaligned images via 68 landmarks.
We also use a deep image quality assessment method to evaluate and rank the cropped image quality in scores.txt, lower score the better.
Notice: There are still some low resolution cropped faces since the corresponding original images are low resolution.
-
Prerequisites
-
OpenCV
-
Python 3.6
-
-
Dataset
-
CelebA-unaligned (10.2GB, higher quality than the aligned data)
-
download the dataset
-
img_celeba.7z (move to ./data/img_celeba.7z): Google Drive or Baidu Netdisk
-
annotations.zip (move to ./data/annotations.zip): Google Drive
-
-
unzip the data
7z x ./data/img_celeba.7z/img_celeba.7z.001 -o./data/ unzip ./data/annotations.zip -d ./data/
-
-
-
Cropping Examples
-
512x512 + lanczos4 + jpg
python align.py --crop_size_h 512 --crop_size_w 512 --order 4 --save_format jpg --n_worker 32
-
512x512 + lanczos4 + png + larger face in the image (by setting
face_factor
, default is 0.45)python align.py --crop_size_h 512 --crop_size_w 512 --order 4 --save_format png --face_factor 0.6 --n_worker 32
-
384x384 + bicubic + jpg + smaller face in the image (by setting
face_factor
, default is 0.45)python align.py --crop_size_h 384 --crop_size_w 384 --order 3 --save_format jpg --face_factor 0.3 --n_worker 32
-
-
Notice
-
order
-
0: INTER_NEAREST
-
1: INTER_LINEAR
-
2: INTER_AREA
-
3: INTER_CUBIC
-
4: INTER_LANCZOS4
-
5: INTER_LANCZOS4
-
-