Skip to content

This demo provides a basic walkthrough of migrating a stateless application from running on a VM all the way to running it on Kubernetes Engine (GKE).

License

Notifications You must be signed in to change notification settings

jamesduke/gke-migration-to-containers

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Migrating to Containers

Containers are quickly becoming an industry standard for deployment of software applications. The business and technological advantages of containerizing workloads are driving many teams towards moving their applications to containers. This demo provides a basic walkthrough of migrating a stateless application from running on a VM to running on Kubernetes Engine (GKE). It demonstrates the lifecycle of an application transitioning from a typical VM/OS-based deployment to three different containerized cloud infrastructure platforms.

Table of Contents

Introduction

There are numerous advantages to using containers to deploy applications. Among these are:

  1. Isolated - Applications have their own libraries; no conflicts will arise from different libraries in other applications.

  2. Limited (limits on CPU/memory) - Applications may not hog resources from other applications.

  3. Portable - The container contains everything it needs and is not tied to an OS or Cloud provider.

  4. Lightweight - The kernel is shared, making it much smaller and faster than a full OS image.

This project demonstrates migrating a simple Python application named Prime-flask to:

  1. A legacy deployment (Debian VM) where Prime-flask is deployed as the only application, much like a traditional application is run in an on-premises datacenter

  2. A containerized version deployed on Container-Optimized OS (COS)

  3. A Kubernetes deployment where Prime-flask is exposed via a load balancer and deployed in Kubernetes Engine

After the deployment you'll run a load test against the final deployment and scale it to accommodate the load.

Architecture

Configuration 1: screenshot

Configuration 2: screenshot

Configuration 3: screenshot

A simple Python Flask web application (Prime-flask) was created for this demonstration which contains two endpoints:

http://<ip>:8080/factorial/ and

http://<ip>:8080/prime/

Examples of use would look like:

curl http://35.227.149.80:8080/prime/10
The sum of all primes less than 10 is 17

curl http://35.227.149.80:8080/factorial/10
The factorial of 10 is 3628800

Also included is a utility to validate a successful deployment.

Prerequisites

Tools

In order to use the code in this demo you will need access to the following tools:

Authenticate gcloud

Prior to running this demo, ensure you have authenticated your gcloud client by running the following command:

gcloud auth application-default login

Configure gcloud settings

The scripts that manage the infrastructure and deployments for this demo attempt to initialize themselves with values from the gcloud config defaults for compute/zone, and core/project.

Run gcloud config list and make sure that compute/zone, compute/region and core/project are populated with values that work for you. You can set their values with the following commands:

Where the region is us-west1:

gcloud config set compute/region us-west1

Updated property [compute/region].

Where the zone inside the region is us-west1-a:

gcloud config set compute/zone us-west1-a

Updated property [compute/zone].

Where the project name is my-project-name:

gcloud config set project my-project-name

Updated property [core/project].

Deployment

The infrastructure required by this project can be deployed by executing:

make create

This will:

  1. Package the deployable Prime-flask application.
  2. Create the container image and push it to the private Container Registry (GCR) for your project.
  3. Generate an appropriate configuration for Terraform.
  4. Execute Terraform which creates the three deployments.

screenshot

screenshot

screenshot

Validation

Validating these three deployments is done by executing:

make validate

A successful output will look like this:

Validating Debian VM Webapp...
Testing endpoint http://35.227.149.80:8080
Endpoint http://35.227.149.80:8080 is responding.
**** http://35.227.149.80:8080/prime/10
The sum of all primes less than 10 is 17
The factorial of 10 is 3628800

Validating Container OS Webapp...
Testing endpoint http://35.230.123.231:8080
Endpoint http://35.230.123.231:8080 is responding.
**** http://35.230.123.231:8080/prime/10
The sum of all primes less than 10 is 17
The factorial of 10 is 3628800

Validating Kubernetes Webapp...
Testing endpoint http://35.190.89.136
Endpoint http://35.190.89.136 is responding.
**** http://35.190.89.136/prime/10
The sum of all primes less than 10 is 17
The factorial of 10 is 3628800

Of course, the IP addresses will likely differ for your deployment.

Load Testing

In a new console window, execute the following, replacing [IP_ADDRESS] with the IP address and port from your validation output from the previous step. Note that the Kubernetes deployment runs on port 80, while the other two deployments run on port 8080:

ab -c 120 -t 60  http://<IP_ADDRESS>/prime/10000

ApacheBench (ab) will execute 120 concurrent requests against the provided endpoint for 1 minute. The demo application's replica is insufficiently sized to handle this volume of requests.

This can be confirmed by reviewing the output from the ab command. A Failed requests value of greater than 0 means that the server couldn't respond successfully to this load:

screenshot

One way to ensure that your system has capacity to handle this type of traffic is by scaling up. In this case, we would want to scale our service horizontally.

In our Debian and COS architectures, horizontal scaling would include:

  1. Creating a load balancer.
  2. Spinning up additional instances.
  3. Registering them with the load balancer.

This is an involved process and is out of scope for this demonstration.

For the third (Kubernetes) deployment the process is far easier:

kubectl scale --replicas 3 deployment/prime-server

After allowing 30 seconds for the replicas to initialize, re-run the load test:

ab -c 120 -t 60  http://<IP_ADDRESS>/prime/10000

Notice how the Failed requests is now 0. This means that all of the 10,000+ requests were successfully answered by the server:

screenshot

Tear Down

Deleting the deployments is accomplished by executing teardown.sh. It will run terraform destroy which will destroy all of the resources created for this demonstration.

screenshot

More Info

For additional information see: Embarking on a Journey Towards Containerizing Your Workloads

Troubleshooting

Occasionally the APIs take a few moments to complete. Running make validate immediately could potentially appear to fail, but in fact the instances haven't finished initializing. Waiting for a minute or two should resolve the issue.

The setup of this demo does take up to 15 minutes. If there is no error the best thing to do is keep waiting. The execution of setup.sh should not be interrupted.

If you do get an error, it probably makes sense to re-execute the failing script. Occasionally there are network connectivity issues, and retrying will likely work the subsequent time.

This is not an officially supported Google product

About

This demo provides a basic walkthrough of migrating a stateless application from running on a VM all the way to running it on Kubernetes Engine (GKE).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Shell 40.4%
  • Python 31.8%
  • HCL 21.4%
  • Makefile 3.5%
  • Dockerfile 2.9%