Skip to content

Commit

Permalink
Add a couple lemmas about product in Data.List.Properties (agda#2460)
Browse files Browse the repository at this point in the history
* Add a couple lemmas about product in Data.List.Properties

* Rework product proofs to be cleaner

* Add CHANGELOG entries

* Get rid of unnecessary module use in product proofs

* Various product proof adjustments

- Renamed nonEmpty-product to product≢0
- Swapped argument order of ∈⇒≤product
- Factored the ordering proofs out into Data.Nat.Properties
- Removed the custom product≢0 proof in Primality

* Fix a CHANGELOG oversight

* Suggested minor changes to ∈⇒≤product

* Manually supply instances in product properties
  • Loading branch information
dolio authored Aug 22, 2024
1 parent cb9854d commit 355ac25
Show file tree
Hide file tree
Showing 4 changed files with 33 additions and 10 deletions.
14 changes: 13 additions & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,12 @@ New modules
Additions to existing modules
-----------------------------

* In `Data.List.Properties`:
```agda
product≢0 : All NonZero ns → NonZero (product ns)
∈⇒≤product : All NonZero ns → n ∈ ns → n ≤ product ns
```

* In `Data.List.Relation.Unary.All`:
```agda
search : Decidable P → ∀ xs → All (∁ P) xs ⊎ Any P xs
Expand All @@ -65,7 +71,13 @@ Additions to existing modules
++⁺ˡ : Reflexive R → ∀ zs → (_++ zs) Preserves (Pointwise R) ⟶ (Pointwise R)
```

* New lemmas in `Data.Nat.Properties`: adjunction between `suc` and `pred`
* New lemmas in `Data.Nat.Properties`:
```agda
m≤n⇒m≤n*o : ∀ o .{{_ : NonZero o}} → m ≤ n → m ≤ n * o
m≤n⇒m≤o*n : ∀ o .{{_ : NonZero o}} → m ≤ n → m ≤ o * n
```

adjunction between `suc` and `pred`
```agda
suc[m]≤n⇒m≤pred[n] : suc m ≤ n → m ≤ pred n
m≤pred[n]⇒suc[m]≤n : .{{NonZero n}} → m ≤ pred n → suc m ≤ n
Expand Down
11 changes: 11 additions & 0 deletions src/Data/List/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -842,6 +842,17 @@ sum-++ (x ∷ xs) ys = begin
∈⇒∣product {n} {n ∷ ns} (here refl) = divides (product ns) (*-comm n (product ns))
∈⇒∣product {n} {m ∷ ns} (there n∈ns) = ∣n⇒∣m*n m (∈⇒∣product n∈ns)

product≢0 : {ns} All NonZero ns NonZero (product ns)
product≢0 [] = _
product≢0 {n ∷ ns} (n≢0 ∷ ns≢0) = m*n≢0 n (product ns) {{n≢0}} {{product≢0 ns≢0}}

∈⇒≤product : {n ns} All NonZero ns n ∈ ns n ≤ product ns
∈⇒≤product {ns = n ∷ ns} (_ ∷ ns≢0) (here refl) =
m≤m*n n (product ns) {{product≢0 ns≢0}}
∈⇒≤product {ns = n ∷ _} (n≢0 ∷ ns≢0) (there n∈ns) =
m≤n⇒m≤o*n n {{n≢0}} (∈⇒≤product ns≢0 n∈ns)


------------------------------------------------------------------------
-- applyUpTo

Expand Down
5 changes: 1 addition & 4 deletions src/Data/Nat/Primality.agda
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
module Data.Nat.Primality where

open import Data.List.Base using ([]; _∷_; product)
open import Data.List.Properties using (product≢0)
open import Data.List.Relation.Unary.All as All using (All; []; _∷_)
open import Data.Nat.Base
open import Data.Nat.Divisibility
Expand Down Expand Up @@ -324,10 +325,6 @@ prime⇒¬composite (prime p) = p

productOfPrimes≢0 : {as} All Prime as NonZero (product as)
productOfPrimes≢0 pas = product≢0 (All.map prime⇒nonZero pas)
where
product≢0 : {ns} All NonZero ns NonZero (product ns)
product≢0 [] = _
product≢0 {n ∷ ns} (nzn ∷ nzns) = m*n≢0 n _ {{nzn}} {{product≢0 nzns}}

productOfPrimes≥1 : {as} All Prime as product as ≥ 1
productOfPrimes≥1 {as} pas = >-nonZero⁻¹ _ {{productOfPrimes≢0 pas}}
Expand Down
13 changes: 8 additions & 5 deletions src/Data/Nat/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -1000,6 +1000,12 @@ m≤n*m m n@(suc _) = begin
m * n ≡⟨ *-comm m n ⟩
n * m ∎

m≤n⇒m≤o*n : o .{{_ : NonZero o}} m ≤ n m ≤ o * n
m≤n⇒m≤o*n o m≤n = ≤-trans m≤n (m≤n*m _ o)

m≤n⇒m≤n*o : o .{{_ : NonZero o}} m ≤ n m ≤ n * o
m≤n⇒m≤n*o o m≤n = ≤-trans m≤n (m≤m*n _ o)

m<m*n : m n .{{_ : NonZero m}} 1 < n m < m * n
m<m*n m@(suc m-1) n@(suc (suc n-2)) (s≤s (s≤s _)) = begin-strict
m <⟨ s≤s (s≤s (m≤n+m m-1 n-2)) ⟩
Expand All @@ -1008,13 +1014,10 @@ m<m*n m@(suc m-1) n@(suc (suc n-2)) (s≤s (s≤s _)) = begin-strict
m * n ∎

m<n⇒m<n*o : o .{{_ : NonZero o}} m < n m < n * o
m<n⇒m<n*o {n = n} o m<n = <-≤-trans m<n (m≤m*n n o)
m<n⇒m<n*o = m≤n⇒m≤n*o

m<n⇒m<o*n : {m n} o .{{_ : NonZero o}} m < n m < o * n
m<n⇒m<o*n {m} {n} o m<n = begin-strict
m <⟨ m<n⇒m<n*o o m<n ⟩
n * o ≡⟨ *-comm n o ⟩
o * n ∎
m<n⇒m<o*n = m≤n⇒m≤o*n

*-cancelʳ-< : RightCancellative _<_ _*_
*-cancelʳ-< zero zero (suc o) _ = 0<1+n
Expand Down

0 comments on commit 355ac25

Please sign in to comment.