forked from crawfordsm/salt_aries
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharies_sdiff.py
executable file
·139 lines (117 loc) · 4.22 KB
/
aries_sdiff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/env python
import sys
import numpy as np
import scipy.stats as st
from ccdproc import CCDData
import pylab as pl
from aries_roi import roi
#like st.sigmaclip, but duplicates operation on noise array "n" as well.
def sigmaclip_n(
a,
n,
low,
high,
):
mean_a = np.mean(a)
std_a = np.std(a)
c = np.arange(0)
cn = np.array([])
for i in range(np.shape(a)[0]):
if (a[i] > (mean_a - std_a*low) and a[i] < (mean_a + std_a*high)):
c = np.append(c,a[i])
cn = np.append(cn,n[i])
return c, cn
# determine ratio between two spectra
# takes two image files and extracts spectra, subtracting the median of a beckground region for each
# signal is summed over the spatial 'height' (2 x dy), and the mean is computed per spectal bin
# (specified by xsum)
# shot noise error propagation is maintained throughout
def sdiff(
afile,
bfile,
yc=roi['yc'],
dy=roi['dy'],
bg1=roi['bg1'],
bg2=roi['bg2'],
headertxt='5500',
wc=5500,
dw=-0.7,
xsum=1,
save=None,
plot=True,
):
# print '--%s %s--' % (afile, bfile)
accd = CCDData.read(afile)
bccd = CCDData.read(bfile)
y1 = yc - dy
y2 = yc + dy
bg1 = bg1
bg2 = bg2
xbin = xsum
# extract signal - spatial binningl
aspec = (accd.data[y1:y2,:] - np.median(accd.data[bg1:bg2,:], axis=0)).sum(axis=0)
bspec = (bccd.data[y1:y2,:] - np.median(bccd.data[bg1:bg2,:], axis=0)).sum(axis=0)
# error propagation
avar = (accd.data[y1:y2,:]+np.median(accd.data[bg1:bg2,:], axis=0)*(bg2-bg1)/np.square(bg2-bg1)).sum(axis=0)
bvar = (bccd.data[y1:y2,:]+np.median(bccd.data[bg1:bg2,:], axis=0)*(bg2-bg1)/np.square(bg2-bg1)).sum(axis=0)
if (xbin > 1):
# apply spectral binning
abin = aspec.reshape(-1,xbin)
bbin = bspec.reshape(-1,xbin)
avbin = avar.reshape(-1,xbin)
bvbin = bvar.reshape(-1,xbin)
cols = abin.shape[0]
a = []
av = []
for x in np.arange(cols):
k, kn = sigmaclip_n(abin[x], avbin[x], low=3.0, high=3.0)
a.extend([k])
av.extend([kn])
cols = bbin.shape[0]
b = []
bv = []
for x in np.arange(cols):
k, kn = sigmaclip_n(bbin[x], bvbin[x], low=3.0, high=3.0)
b.extend([k])
bv.extend([kn])
aspec = np.array([np.mean(x) for x in a])
bspec = np.array([np.mean(x) for x in b])
#error propagation
avar = np.array([x.sum()/np.square(np.shape(x)[0]) for x in av])
bvar = np.array([x.sum()/np.square(np.shape(x)[0]) for x in bv])
# spectral ratio
rspec = bspec/aspec
# error propagation
rvar = np.square(rspec)*(avar/np.square(aspec) + bvar/np.square(bspec))
#print rspec
#print np.sqrt(rvar)
xarr = np.arange(len(aspec))
warr = wc + dw*xbin*xarr
print 'ave = %f %%' % (rspec.mean()*100.0)
print 'stdev = %f %%' % (rspec.std()*100.0)
print 'range = %f %%' % ((rspec.max() - rspec.min())*100.0)
print 'S/N(a) = %f / %f = %f' % (aspec.mean(), np.sqrt(avar).mean(), aspec.mean()/np.sqrt(avar).mean())
print 'S/N(b) = %f / %f = %f' % (bspec.mean(), np.sqrt(bvar).mean(), bspec.mean()/np.sqrt(bvar).mean())
print 'S/N(r) = %f / %f = %f' % (rspec.mean(), np.sqrt(rvar).mean(), rspec.mean()/np.sqrt(rvar).mean())
if save:
oarr = np.array([warr, aspec, bspec, rspec, rvar]).T
oarr = oarr[oarr[:,0].argsort()]
hdrtxt = "" # "\n%s\t%s\t%s\nwavelength [nm]\trefspec [counts]\tcompspec [counts]\n" % (headertxt, afile, bfile)
np.savetxt(save, oarr, fmt="%10e", delimiter="\t", header=hdrtxt)
if plot:
pl.figure()
pl.subplot(311)
pl.plot(warr, aspec)
pl.plot(warr, bspec)
pl.ylabel('Counts', size='x-large')
pl.subplot(312)
pl.plot(warr, bspec-aspec)
pl.ylabel('Diff', size='x-large')
pl.subplot(313)
pl.plot(warr, rspec*100.0)
pl.plot(warr, (rspec+np.sqrt(rvar))*100.0)
pl.ylabel('Deviation (%)', size='x-large')
pl.xlabel('Wavelength', size='x-large')
pl.show()
if __name__ == '__main__':
sdiff(*sys.argv[1:])