Skip to content

janusbrink/salt_aries

 
 

Repository files navigation

salt_aries

Data reduction scripts for RSS alignment testing

Installation Instructions

The following scripts require these packages to be installed in order to run. These can all be installed via pip or conda:

  • numpy
  • scipy
  • matplotlib
  • astropy
  • ccdproc
  • pyqt (wavecal only)
  • pyspectrograph (wavecal only)

At this time, the development versions of this package needs to be installed (required for the wavelength calibration tool only)

The specreduce package does depend on PyQt4 package.

Suggested method for installing most of the necessary packages via anaconda

conda create --name aries -y python=2.7 astropy pyqt matplotlib 
conda activate aries
conda install -c astropy ccdproc specutils
mkdir aries
cd aries 
git clone https://github.com/janusbrink/salt_aries

NOTE: If plots do not display on Mac - change: ~/.matplotlib/matplotlibrc and add: backend: MacOSX

Instructions

To perform basic data reductions, follow these steps:

Configuration

The Region of Interest (ROI) for the spectrum and background is defined in aries_roi.py:

# region on interest definition
roi = {
        'yc': 107,      # Centre row of spectrum
        'dy': 30,       # Half-width of spectrum in rows
        'bg1': 200,     # Background region start row
        'bg2': 315,     # Background region end row
    }

The wavelength calibration is defined in aries_wcal.py:

# wavelength cal table
#  wavelength [nm], wl at x=0 [nm], disp [nm/pixel]
wcaldict = {
     350: (293.2687, 0.075744),
     400: (343.3987, 0.075479),
     450: (393.5357, 0.075196),
     500: (443.6857, 0.074895),
     550: (493.8437, 0.074575),
     600: (544.0107, 0.074238),
     650: (593.4949, 0.075834),
     700: (644.3727, 0.073507),
     750: (694.5677, 0.073112),
     800: (744.7717, 0.072700),
     850: (794.9887, 0.072270),
     900: (845.2147, 0.071817),
     }

Run the basic image reductions on the data.

Pass the names of the files to the aprep script to reduce each file. There are in addition several optional flags that can be passed to remove a bias frame, dark frame, etc. Output files have a 'p' prefix.

aprep [files to be reduced] [--d dark_file] [--b bias file]

Typically background subtraction from a region next to the spectrum is sufficient.

Example:

aprep image*

The output files are prefixed with p

Produce difference spectra

To plot the difference spectra of a single data set (a pair of images):

adiff [ref_file] [test_file] 

Example:

adiff pimage001.fit pimage002.fit --wref 350

The optional wref flag indicates the wavelength calibration configuration entry to use when plotting the data.

Reduce all data in folder

arundiff [list of files]

arundiff calls aries_diff_all.py that contains the test setup of files in the folder: cfglist = ( ('out', 'in', 350), ('out', 'in', 400), ('out', 'in', 450), ('out', 'in', 500), ('out', 'in', 550), ('out', 'in', 600), ('out', 'in', 650), ('out', 'in', 700), ('out', 'in', 750), ('out', 'in', 800), ('out', 'in', 850), ('out', 'in', 900) )

Example:

arundiff pimage*

Output for each image pair is saved as throughputnn_xxxx.txt and the combined output is available in combined.txt.

About

Data reduction scripts for RSS alignment testing

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.3%
  • Shell 2.7%