Lightweight tool for quickly extracting asymptotic CLs limits
source setup.sh
make
The script requires you provide a dataset but by default will keep this dataset blinded and generate it's own asimov based on the nominal pdf's values or a designated snapshot ( setting the first POI to zero ).
Setting limit on mu_tH
quickCLs -f filename.root -d dataset -p mu_tH=1_0_50
Setting limit on mu_ggH
while fixing mu_VBF=2
quickCLs -f filename.root -d dataset -p mu_ggH=1_-5_5,mu_VBF=2
Setting limit on mu_ttH
while profiling mu_ggH
, mu_VBF
, and mu_VH
quickCLs -f filename.root -d dataset -p mu_ttH=1_0_5,mu_ggH=1_0_5,mu_VBF=1_0_5,mu_VH=1_0_5
Fixing all systematics with ATLAS_*
prefix
quickCLs -f filename.root -d dataset -p mu_ZH=1_0_5 -n ATLAS_*
Additional features can be discovered by asking for help
Usage: manager [options]
quickCLs options:
-f [ --inputFile ] arg Specify the input TFile (REQUIRED)
-o [ --outputFile ] arg Save fit results to output TFile
-d [ --dataName ] arg (=combData) Name of the observed dataset
-w [ --wsName ] arg (=combWS) Name of the workspace
-m [ --mcName ] arg (=ModelConfig) Name of the model config
-s [ --snapshot ] arg Load snapshot for generating Asimov
dataset.
-p [ --poi ] arg Specify POIs to be used in fit
-n [ --fixNP ] arg Specify NPs to be used in fit
--betterBands arg (=1) Improve bands by using a more
appropriate asimov dataset for those
points
--betterNegBands arg (=0) Also improve negative bands (not
recommended)
--setNegAtZero arg (=0) Profile Asimov for negative bands at
zero (not recommended)
--minStrat arg (=0) Set minimizer strategy
--printLevel arg (=-1) Set minimizer print level
--maxRetries arg (=3) Number of minimize (fcn) retries before
giving up
--precision arg (=0.005) Set % precision in mu that defines
iterative cutoff
--verbose arg (=0) Set verbose (very spammy)
--nllOffset arg (=1) Set NLL offset
--optConst arg (=2) Set optimize constant
--doExp arg (=1) Compute expected limit
--doObs arg (=0) Compute observed limit
--doBlind arg (=1) Blind analysis from observed limits
--doTilde arg (=1) Bound mu at zero if true and do the
\tilde{q}_{mu} asymptotics
--killBelowFatal arg (=1) Bound mu at zero if true and do the
\tilde{q}_{mu} asymptotics
--usePredFit arg (=0) (Experimental) extrapolate best fit
nuisance parameters based on previous
fit results
--condExp arg (=0) Profiling mode for Asimov data: 0 =
conditional MLEs, 1 = nominal MLEs
-h [ --help ] Print help message