Skip to content

jasonjfoster/rolloptim

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

57 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

rolloptim

Overview

rolloptim is a package that provides analytical computation of rolling optimization for time-series data.

Installation

Install the development version from GitHub:

# install.packages("devtools")
devtools::install_github("jasonjfoster/rolloptim") # roll (>= 1.1.7)

Usage

Load the package and supply a dataset:

library(rolloptim)

n_vars <- 3
n_obs <- 15
x <- matrix(rnorm(n_obs * n_vars), nrow = n_obs, ncol = n_vars)
y <- rnorm(n_obs)

mu <- roll::roll_mean(x, 5)
xx <- roll::roll_crossprod(x, x, 5)
xy <- roll::roll_crossprod(x, y, 5)
sigma <- roll::roll_cov(x, width = 5)

Then, to compute rolling optimization, use the functions:

# rolling optimization to minimize variance
roll_min_var(sigma)

# rolling optimization to maximize mean
roll_max_mean(mu)

# rolling optimization to minimize residual sum of squares
roll_min_rss(xx, xy)

# rolling optimization to maximize utility
roll_max_utility(mu, sigma, lambda = 1)

Note that handling of constraints is implemented by default (see the total, lower, and upper arguments).

References

Markowitz, H.M. (1952). "Portfolio Selection." The Journal of Finance, 7(1), 77–91.

Tam, A. (2021). "Lagrangians and Portfolio Optimization." https://www.adrian.idv.hk/2021-06-22-kkt/.

About

Analytical computation of rolling optimization for time-series data.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published