Skip to content

Commit

Permalink
DOC quick fixes for TableVectorizer (skrub-data#818)
Browse files Browse the repository at this point in the history
  • Loading branch information
Vincent-Maladiere authored Nov 13, 2023
1 parent 0ccfb6a commit 05f961e
Showing 1 changed file with 4 additions and 4 deletions.
8 changes: 4 additions & 4 deletions skrub/_table_vectorizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -239,7 +239,7 @@ class TableVectorizer(TransformerMixin, BaseEstimator):
'remainder' for applying `remainder`,
'passthrough' to return the unencoded columns.
The default transformer is \
(OneHotEncoder(handle_unknown="ignore", drop="if_binary")).
``OneHotEncoder(handle_unknown="ignore", drop="if_binary")``.
Features classified under this category are imputed based on the
strategy defined with `impute_missing`.
Expand All @@ -252,7 +252,7 @@ class TableVectorizer(TransformerMixin, BaseEstimator):
'drop' for dropping the columns,
'remainder' for applying `remainder`,
or 'passthrough' to return the unencoded columns.
The default transformer is (GapEncoder(n_components=30)).
The default transformer is ``GapEncoder(n_components=30)``.
Features classified under this category are imputed based on the
strategy defined with `impute_missing`.
Expand All @@ -273,8 +273,8 @@ class TableVectorizer(TransformerMixin, BaseEstimator):
a Pipeline containing the preprocessing steps,
'drop' for dropping the columns,
'remainder' for applying `remainder`,
'passthrough' to return the unencoded columns,
or `None` to use the default transformer (DatetimeEncoder()).
'passthrough' to return the unencoded columns.
The default transformer is ``DatetimeEncoder()``.
Features classified under this category are not imputed at all
(regardless of `impute_missing`).
Expand Down

0 comments on commit 05f961e

Please sign in to comment.