Skip to content

Toolbox for analyzing bridges using ANN and other methods

Notifications You must be signed in to change notification settings

jesperiksson/struc-mon

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

struc-mon

Linux

Downloads and setup

  1. Clone this repository into the desired folder: git clone https://github.com/jesperiksson/struc-mon .
  2. Make sure you have at least Python 3.7 installed: ´python --version´. Othervise update: https://docs.python-guide.org/starting/install3/linux/
  3. Make sure you either have Anaconda installed: https://docs.anaconda.com/anaconda/install/ or have the following packages installed: Matplotlib.pyplot - For plots
    Numpy - For maths
    Pandas - For data frames
    Rainflow - For creating rainflow analysis of stress
    SciPy - For signal analysis
    sklearn - For normalization
    Tensorflow 2.x - For machine learning \ Otherwise they can be installed using pip:
    pip install pip
    Matplotlib: https://pypi.org/project/matplotlib/
    Numpy: https://numpy.org/install/
    Pandas: https://pypi.org/project/pandas/
    Rainflow: https://pypi.org/project/rainflow/
    SciPy: https://www.scipy.org/install.html
    sklearn: https://scikit-learn.org/stable/install.html
    Tensorflow: https://www.tensorflow.org/install/pip \
  4. Open the file in the repo named config.py and provide the path to the folder where the measurement files are stored in the variable file_path, e.g. file_path = 'home/user/measurements'

Data.py

Superclass for objects containing data

AggregatedData.py

Subclass containing methods for reading and storing data using OGC Standard: http://docs.opengeospatial.org/is/15-078r6/15-078r6.html

PostgresData.py

Subclass containing methods for reading and storing data from a PostgreSQL server. Queries are generated with a QueryGenerator object. Also contain a further subclass for anomalies.

Anomaly.py

Anomaly objects

AnomalySettings.py

Settings for anomaly objects

Model.py

Superclass for model objects. Also contains subclasses TimeSeriesPredictionNeuralNet and TimeSeriesClassificationNeuralNet

PCAAnomalies

Class for PCA objects operating on Anomaly objects

Releases

No releases published

Packages

No packages published