- Output formats
- Alignment Format
- Nodes and Edges Format
- Data
- Hand Alignments
- Training
- Config File
- Step by Step Training
- Evaluation
- Alignment Evaluation
- Parser Performance
- Development
- Developer's Guide
##1. Preprocessing the data
Download and extract LDC2013E117.tgz
into the directory data/LDC2013E117_DEFT_Phase_1_AMR_Annotation_R3
. To make
the train/dev/test split:
cd scripts/preprocessing
LDC2013E117/make_splits.sh
Then run ./PREPROCESS.sh
to tokenize, align, and dependency parse the data.
##2. Training
(To skip this step, which takes about 3-6 hours, download and extract model weights models.tgz into the directory $JAMR_HOME/models.)
cd scripts/training
Extract concept table:
./cmd.conceptTable.train
Concept identification (stage1) training:
./cmd.stage1-weights
Relation identification (stage2) training:
./cmd.stage2-weights
Search for 'Performance on Dev' in stage2-weights.err
for early stopping.
##3. Evaluating
Decode test set:
./cmd.test.decode.allstages
or
./cmd.test.decode.stage2only
Evaluate the predictions using smatch:
${JAMR_HOME}/scripts/smatch_v1_0/smatch_modified.py --pr -f ${MODEL_DIR}/test.decode.stage2only ${TEST_FILE}
${JAMR_HOME}/scripts/smatch_v1_0/smatch_modified.py --pr -f ${MODEL_DIR}/test.decode.allstages ${TEST_FILE}