Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

train.py argument's description fix #71

Open
wants to merge 8 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 10 additions & 1 deletion dataloaders/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from dataloaders.datasets import cityscapes, coco, combine_dbs, pascal, sbd
from dataloaders.datasets import cityscapes, coco, combine_dbs, pascal, sbd, factory
from torch.utils.data import DataLoader

def make_data_loader(args, **kwargs):
Expand Down Expand Up @@ -37,6 +37,15 @@ def make_data_loader(args, **kwargs):
test_loader = None
return train_loader, val_loader, test_loader, num_class

elif args.dataset == 'factory':
train_set = factory.FactorySegmentation(args, split='train')
val_set = factory.FactorySegmentation(args, split='val')
num_class = train_set.NUM_CLASSES
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs)
val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs)
test_loader = None
return train_loader, val_loader, test_loader, num_class

else:
raise NotImplementedError

102 changes: 102 additions & 0 deletions dataloaders/datasets/factory.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
import numpy as np
import torch
from torch.utils.data import Dataset
from mypath import Path
from tqdm import trange
import os
from pycocotools import mask
from torchvision import transforms
from dataloaders import custom_transforms as tr
from PIL import Image, ImageFile
from glob import glob
ImageFile.LOAD_TRUNCATED_IMAGES = True


class FactorySegmentation():
NUM_CLASSES = 5

def __init__(self, args, base_dir=Path.db_root_dir('factory'),split='train'):
self.label_path = glob(base_dir+"label_img/*")
img_path = [p.split("/")[-1].split(".")[0] for p in self.label_path]
self.img_path = [base_dir+"data_img/"+num+".png" for num in img_path]
self.split = split

def __getitem__(self, index):
_img = Image.open(self.img_path[index]).convert('RGB')
_target = np.array(Image.open(self.label_path[index]).convert('RGB'), dtype=np.float32)
_target = self._gen_seg_mask(_target)
sample = {'image': _img, 'label': _target}

if self.split == "train":
return self.transform_tr(sample)
elif self.split == 'val':
return self.transform_val(sample)

def transform_tr(self, sample):
composed_transforms = transforms.Compose([
tr.RandomGaussianBlur(),
tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
tr.ToTensor()
])
return composed_transforms(sample)

def transform_val(self, sample):
composed_transforms = transforms.Compose([
tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
tr.ToTensor()
])
return composed_transforms(sample)

def _gen_seg_mask(self, target):
target /= 255
mask = target[:,:,0] + target[:,:,1]*2 + target[:,:,2]*3

mask = np.where(mask==1, 1, mask)
mask = np.where(mask==2, 2, mask)
mask = np.where(mask==3, 3, mask)
mask = np.where(mask==6, 4, mask)
return Image.fromarray(mask)

def __len__(self):
return len(self.img_path)


if __name__ == "__main__":
from dataloaders import custom_transforms as tr
from dataloaders.utils import decode_segmap
from torch.utils.data import DataLoader
from torchvision import transforms
import matplotlib.pyplot as plt
import argparse

parser = argparse.ArgumentParser()
args = parser.parse_args()
args.base_size = 513
args.crop_size = 513

factory_val = FactorySegmentation(args, split='val')

dataloader = DataLoader(factory_val, batch_size=4, shuffle=True, num_workers=0)

for ii, sample in enumerate(dataloader):
for jj in range(sample["image"].size()[0]):
img = sample['image'].numpy()
gt = sample['label'].numpy()
tmp = np.array(gt[jj]).astype(np.uint8)
segmap = decode_segmap(tmp, dataset='factory')
img_tmp = np.transpose(img[jj], axes=[1, 2, 0])
img_tmp *= (0.229, 0.224, 0.225)
img_tmp += (0.485, 0.456, 0.406)
img_tmp *= 255.0
img_tmp = img_tmp.astype(np.uint8)
plt.figure()
plt.title('display')
plt.subplot(211)
plt.imshow(img_tmp)
plt.subplot(212)
plt.imshow(segmap)

if ii == 1:
break

plt.show(block=True)
13 changes: 12 additions & 1 deletion dataloaders/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,9 @@ def decode_segmap(label_mask, dataset, plot=False):
elif dataset == 'cityscapes':
n_classes = 19
label_colours = get_cityscapes_labels()
elif dataset == 'factory':
n_classes = 5
label_colours = get_factory_labels()
else:
raise NotImplementedError

Expand Down Expand Up @@ -98,4 +101,12 @@ def get_pascal_labels():
[64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0],
[64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128],
[0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0],
[0, 64, 128]])
[0, 64, 128]])

def get_factory_labels():
return np.array([
[0, 0, 0],
[255, 0, 0],
[0, 255, 0],
[0, 0, 255],
[255, 255, 255]])
2 changes: 2 additions & 0 deletions mypath.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,8 @@ def db_root_dir(dataset):
return '/path/to/datasets/cityscapes/' # foler that contains leftImg8bit/
elif dataset == 'coco':
return '/path/to/datasets/coco/'
elif dataset == 'factory':
return '/home/kataoka/dataset/factory_seg/'
else:
print('Dataset {} not available.'.format(dataset))
raise NotImplementedError
10 changes: 6 additions & 4 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,10 +181,10 @@ def main():
choices=['resnet', 'xception', 'drn', 'mobilenet'],
help='backbone name (default: resnet)')
parser.add_argument('--out-stride', type=int, default=16,
help='network output stride (default: 8)')
parser.add_argument('--dataset', type=str, default='pascal',
choices=['pascal', 'coco', 'cityscapes'],
help='dataset name (default: pascal)')
help='network output stride (default: 16)')
parser.add_argument('--dataset', type=str, default='factory',
choices=['pascal', 'coco', 'cityscapes', 'factory'],
help='dataset name (default: factory)')
parser.add_argument('--use-sbd', action='store_true', default=True,
help='whether to use SBD dataset (default: True)')
parser.add_argument('--workers', type=int, default=4,
Expand Down Expand Up @@ -267,6 +267,7 @@ def main():
'coco': 30,
'cityscapes': 200,
'pascal': 50,
'factory': 50,
}
args.epochs = epoches[args.dataset.lower()]

Expand All @@ -281,6 +282,7 @@ def main():
'coco': 0.1,
'cityscapes': 0.01,
'pascal': 0.007,
'factory': 0.01,
}
args.lr = lrs[args.dataset.lower()] / (4 * len(args.gpu_ids)) * args.batch_size

Expand Down