Skip to content

Tables with signals represented by multi-dimensional arrays with identical first dimensions

License

Notifications You must be signed in to change notification settings

johhell/SignalTables.jl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

82 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SignalTables

Stable The MIT License

Package SignalTables (see docu) provides abstract and concrete types and functions for signal tables. A signal table is basically a table where the table columns can be multi-dimensional arrays with attributes. Typically, simulation results, reference signals, table-based input signals, measurement data, look-up tables can be represented by a signal table.

A signal table is an ordered dictionary of signals with string keys. A signal can be defined in the following forms:

  • As Var dictionary that has a required values key (or an alias key) representing a signal array of any element type as function of the independent signal(s) (or is the k-th independent signal). A signal array is a multi-dimensional array with indices [i1,i2,...,j1,j2,...] to hold variable elements [j1,j2,...] at the [i1,i2,...] independent signal(s). If an element of a signal array is not defined, it has a value of missing.
  • As Par dictionary that has a required value key (or and alias key) representing a constant of any type.
  • As Map dictionary that has no required keys and collects attributes/meta-data that are associated with a Var, Par, Map, or signal table dictionary.

In all these dictionaries, additional attributes can be stored, for example unit, info, variability (continuous, clocked, ...), interpolation, extrapolation, and user-defined attributes.

This logical view is directly mapped to Julia data structures, but can be also mapped to data structures in other programming languages. It is then possible to use existing textual or binary persistent serialization formats (JSON, HDF5, BSON, MessagePack, ...) to store a signal table in these formats on file. Furthermore, a subset of a signal table can also be stored in traditional tables (Excel, CSV, pandas, DataFrames.jl, ...) by flattening the multi-dimensional arrays and not storing constants and attributes.

Examples

using SignalTables

t = 0.0:0.1:0.5
sigTable = SignalTable(
  "time"         => Var(values= t, unit="s", independent=true),
  "load.r"       => Var(values= [sin.(t) cos.(t) sin.(t)], unit="m"),
  "motor.angle"  => Var(values= sin.(t), unit="rad", state=true, der="motor.w"),
  "motor.w"      => Var(values= cos.(t), unit="rad/s"),
  "motor.w_ref"  => Var(values= 0.9*[sin.(t) cos.(t)], unit = ["rad", "1/s"],
                                info="Reference angle and speed"),
  "wm"           => Var(alias = "motor.w"),
  "ref.clock"    => Var(values= [true, missing, missing, true, missing, missing],
                                 variability="clock"),
  "motor.w_c"    => Var(values= [0.8, missing, missing, 1.5, missing, missing],
                                variability="clocked", clock="ref.clock"),
  "motor.inertia"=> Par(value = 0.02f0, unit="kg*m/s^2"),
  "motor.data"   => Par(value = "resources/motorMap.json"),
  "attributes"   => Map(experiment=Map(stoptime=0.5, interval=0.01))
)

phi_m_sig = getSignal(        sigTable, "motor.angle")   # = Var(values=..., unit=..., ...)
phi_m     = getValuesWithUnit(sigTable, "motor.angle")   # = [0.0, 0.0998, 0.1986, ...]u"rad"
w_c       = getValues(        sigTable, "motor.w_c"  )   # = [0.8, missing, missing, 1.5, ...]
inertia   = getValueWithUnit( sigTable, "motor.inertia") # = 0.02u"kg*m/s^2"
getValues(sigTable, "motor.w") === getValues(sigTable, "wm")

showInfo(sigTable)

Command showInfo generates the following output:

name          unit           size  eltypeOrType           kind attributes
───────────────────────────────────────────────────────────────────────────────────────────────────────
time          "s"            [6]   Float64                Var  independent=true
load.r        "m"            [6,3] Float64                Var  
motor.angle   "rad"          [6]   Float64                Var  state=true, der="motor.w"
motor.w       "rad/s"        [6]   Float64                Var  
motor.w_ref   ["rad", "1/s"] [6,2] Float64                Var  info="Reference angle and speed"
wm            "rad/s"        [6]   Float64                Var  alias="motor.w"
ref.clock                    [6]   Union{Missing,Bool}    Var  variability="clock"
motor.w_c                    [6]   Union{Missing,Float64} Var  variability="clocked", clock="ref.clock"
motor.inertia "kg*m/s^2"           Float32                Par  
motor.data                         String                 Par  
attributes                                                Map  experiment=Map(stoptime=0.5, interval=0.01)

The various Julia FileIO functions can be directly used to save a signal table in various formats, e.g. JSON or HDF5 (see FileIO Examples, json file of sigTable above ).

using SignalTable
usePlotPackage("PyPlot")    # or ENV["SignalTablesPlotPackage"] = "PyPlot"

sigTable = getSignalTableExample("MissingValues")

@usingPlotPackage                           # = using SignalTablesInterface_PyPlot
plot(sigTable, [("sigC", "load.r[2:3]"), ("sigB", "sigD")])  # generate plots

generate the following plot:

Plots of SigTable

Concrete implementations of the Abstract Signal Table Interface are provided for:

  • SignalTable (included in SignalTables.jl).

  • Modia.jl (a modeling and simulation environment; version >= 0.9.0)

  • DataFrames.jl (tabular data; first column is independent variable; only scalar variables))

  • Tables.jl (abstract tables, e.g. CSV tables; first column is independent variable; only scalar variables).

Concrete implementations of the Abstract Plot Interface are provided for:

Furthermore, there is a dummy implementation included in SignalTables that is useful when performing tests with runtests.jl, in order that no plot package needs to be loaded during the tests:

  • SilentNoPlot (= all plot calls are silently ignored).

Installation

julia> ]add SignalTables
        add SignalTablesInterface_PyPlot        # if plotting with PyPlot desired
        add SignalTablesInterface_GLMakie       # if plotting with GLMakie desired
        add SignalTablesInterface_WGLMakie      # if plotting with WGLMakie desired
        add SignalTablesInterface_CairoMakie    # if plotting with CairoMakie desired

If you have trouble installing SignalTablesInterface_PyPlot, see Installation of PyPlot.jl

Main developer

Martin Otter, DLR - Institute of System Dynamics and Control

About

Tables with signals represented by multi-dimensional arrays with identical first dimensions

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Julia 100.0%