forked from GafferHQ/gaffer
-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This allows tensors to be converted back to GafferImage images, after they have been processed by the Inference node.
- Loading branch information
1 parent
af1fded
commit 6114370
Showing
7 changed files
with
649 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
////////////////////////////////////////////////////////////////////////// | ||
// | ||
// Copyright (c) 2024, Cinesite VFX Ltd. All rights reserved. | ||
// | ||
// Redistribution and use in source and binary forms, with or without | ||
// modification, are permitted provided that the following conditions are | ||
// met: | ||
// | ||
// * Redistributions of source code must retain the above | ||
// copyright notice, this list of conditions and the following | ||
// disclaimer. | ||
// | ||
// * Redistributions in binary form must reproduce the above | ||
// copyright notice, this list of conditions and the following | ||
// disclaimer in the documentation and/or other materials provided with | ||
// the distribution. | ||
// | ||
// * Neither the name of John Haddon nor the names of | ||
// any other contributors to this software may be used to endorse or | ||
// promote products derived from this software without specific prior | ||
// written permission. | ||
// | ||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS | ||
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, | ||
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | ||
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | ||
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | ||
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | ||
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | ||
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | ||
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
// | ||
////////////////////////////////////////////////////////////////////////// | ||
|
||
#pragma once | ||
|
||
#include "GafferML/Export.h" | ||
#include "GafferML/TensorPlug.h" | ||
|
||
#include "GafferImage/FlatImageSource.h" | ||
|
||
namespace GafferML | ||
{ | ||
|
||
class GAFFERML_API TensorToImage : public GafferImage::FlatImageSource | ||
{ | ||
|
||
public : | ||
|
||
explicit TensorToImage( const std::string &name=defaultName<TensorToImage>() ); | ||
~TensorToImage() override; | ||
|
||
GAFFER_NODE_DECLARE_TYPE( GafferML::TensorToImage, TensorToImageTypeId, GafferImage::FlatImageSource ); | ||
|
||
TensorPlug *tensorPlug(); | ||
const TensorPlug *tensorPlug() const; | ||
|
||
Gaffer::StringVectorDataPlug *channelsPlug(); | ||
const Gaffer::StringVectorDataPlug *channelsPlug() const; | ||
|
||
Gaffer::BoolPlug *interleavedChannelsPlug(); | ||
const Gaffer::BoolPlug *interleavedChannelsPlug() const; | ||
|
||
void affects( const Gaffer::Plug *input, AffectedPlugsContainer &outputs ) const override; | ||
|
||
protected : | ||
|
||
void hashMetadata( const GafferImage::ImagePlug *parent, const Gaffer::Context *context, IECore::MurmurHash &h ) const override; | ||
IECore::ConstCompoundDataPtr computeMetadata( const Gaffer::Context *context, const GafferImage::ImagePlug *parent ) const override; | ||
|
||
void hashFormat( const GafferImage::ImagePlug *parent, const Gaffer::Context *context, IECore::MurmurHash &h ) const override; | ||
GafferImage::Format computeFormat( const Gaffer::Context *context, const GafferImage::ImagePlug *parent ) const override; | ||
|
||
void hashDataWindow( const GafferImage::ImagePlug *parent, const Gaffer::Context *context, IECore::MurmurHash &h ) const override; | ||
Imath::Box2i computeDataWindow( const Gaffer::Context *context, const GafferImage::ImagePlug *parent ) const override; | ||
|
||
void hashChannelNames( const GafferImage::ImagePlug *parent, const Gaffer::Context *context, IECore::MurmurHash &h ) const override; | ||
IECore::ConstStringVectorDataPtr computeChannelNames( const Gaffer::Context *context, const GafferImage::ImagePlug *parent ) const override; | ||
|
||
void hashChannelData( const GafferImage::ImagePlug *parent, const Gaffer::Context *context, IECore::MurmurHash &h ) const override; | ||
IECore::ConstFloatVectorDataPtr computeChannelData( const std::string &channelName, const Imath::V2i &tileOrigin, const Gaffer::Context *context, const GafferImage::ImagePlug *parent ) const override; | ||
|
||
static size_t g_firstPlugIndex; | ||
|
||
}; | ||
|
||
IE_CORE_DECLAREPTR( TensorToImage ) | ||
|
||
} // namespace GafferML |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
########################################################################## | ||
# | ||
# Copyright (c) 2024, Cinesite VFX Ltd. All rights reserved. | ||
# | ||
# Redistribution and use in source and binary forms, with or without | ||
# modification, are permitted provided that the following conditions are | ||
# met: | ||
# | ||
# * Redistributions of source code must retain the above | ||
# copyright notice, this list of conditions and the following | ||
# disclaimer. | ||
# | ||
# * Redistributions in binary form must reproduce the above | ||
# copyright notice, this list of conditions and the following | ||
# disclaimer in the documentation and/or other materials provided with | ||
# the distribution. | ||
# | ||
# * Neither the name of John Haddon nor the names of | ||
# any other contributors to this software may be used to endorse or | ||
# promote products derived from this software without specific prior | ||
# written permission. | ||
# | ||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS | ||
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, | ||
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | ||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | ||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | ||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | ||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | ||
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | ||
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
# | ||
########################################################################## | ||
|
||
import unittest | ||
|
||
import imath | ||
|
||
import IECore | ||
|
||
import Gaffer | ||
import GafferTest | ||
import GafferImage | ||
import GafferImageTest | ||
import GafferML | ||
|
||
class TensorToImageTest( GafferImageTest.ImageTestCase ) : | ||
|
||
def testNoInput( self ) : | ||
|
||
node = GafferML.TensorToImage() | ||
with self.assertRaisesRegex( Gaffer.ProcessException, "Empty tensor" ) : | ||
node["out"].dataWindow() | ||
|
||
def testNonMatchingChannels( self ) : | ||
|
||
tensor = GafferML.Tensor( | ||
IECore.Color3fVectorData( [ imath.Color3f( 1, 2, 3 ) ] ), | ||
[ 1, 1, 3 ] | ||
) | ||
|
||
tensorToImage = GafferML.TensorToImage() | ||
tensorToImage["tensor"].setValue( tensor ) | ||
tensorToImage["interleavedChannels"].setValue( True ) | ||
self.assertEqual( tensorToImage["out"].dataWindow(), imath.Box2i( imath.V2i( 0 ), imath.V2i( 1 ) ) ) | ||
|
||
# Only two channels specified. | ||
|
||
tensorToImage["channels"].setValue( IECore.StringVectorData( [ "R", "G" ] ) ) | ||
self.assertEqual( tensorToImage["out"].channelNames(), IECore.StringVectorData( [ "R", "G" ] ) ) | ||
self.assertEqual( tensorToImage["out"].channelData( "R", imath.V2i( 0 ) )[0], 1 ) | ||
self.assertEqual( tensorToImage["out"].channelData( "G", imath.V2i( 0 ) )[0], 2 ) | ||
|
||
with self.assertRaisesRegex( RuntimeError, 'Invalid channel "B"' ) : | ||
tensorToImage["out"].channelData( "B", imath.V2i( 0 ) ) | ||
|
||
# Duplicate channels specified. We just take the first. | ||
|
||
tensorToImage["channels"].setValue( IECore.StringVectorData( [ "R", "R", "B" ] ) ) | ||
self.assertEqual( tensorToImage["out"].channelNames(), IECore.StringVectorData( [ "R", "B" ] ) ) | ||
self.assertEqual( tensorToImage["out"].channelData( "R", imath.V2i( 0 ) )[0], 1 ) | ||
self.assertEqual( tensorToImage["out"].channelData( "B", imath.V2i( 0 ) )[0], 3 ) | ||
|
||
with self.assertRaisesRegex( RuntimeError, 'Invalid channel "G' ) : | ||
tensorToImage["out"].channelData( "G", imath.V2i( 0 ) ) | ||
|
||
# Too many channels specified. We error if the extra channel is accessed. | ||
|
||
tensorToImage["channels"].setValue( IECore.StringVectorData( [ "R", "G", "B", "A" ] ) ) | ||
self.assertEqual( tensorToImage["out"].channelNames(), IECore.StringVectorData( [ "R", "G", "B", "A" ] ) ) | ||
self.assertEqual( tensorToImage["out"].channelData( "R", imath.V2i( 0 ) )[0], 1 ) | ||
self.assertEqual( tensorToImage["out"].channelData( "G", imath.V2i( 0 ) )[0], 2 ) | ||
self.assertEqual( tensorToImage["out"].channelData( "B", imath.V2i( 0 ) )[0], 3 ) | ||
|
||
with self.assertRaisesRegex( RuntimeError, 'Channel "A" out of range' ) : | ||
tensorToImage["out"].channelData( "A", imath.V2i( 0 ) ) | ||
|
||
# Channels skipped by entering empty strings. | ||
|
||
tensorToImage["channels"].setValue( IECore.StringVectorData( [ "R", "", "B" ] ) ) | ||
self.assertEqual( tensorToImage["out"].channelNames(), IECore.StringVectorData( [ "R", "B" ] ) ) | ||
self.assertEqual( tensorToImage["out"].channelData( "R", imath.V2i( 0 ) )[0], 1 ) | ||
self.assertEqual( tensorToImage["out"].channelData( "B", imath.V2i( 0 ) )[0], 3 ) | ||
|
||
with self.assertRaisesRegex( RuntimeError, 'Invalid channel "G' ) : | ||
tensorToImage["out"].channelData( "G", imath.V2i( 0 ) ) | ||
|
||
def testRoundTripWithImageToTensor( self ) : | ||
|
||
image = GafferImage.Checkerboard() | ||
|
||
imageToTensor = GafferML.ImageToTensor() | ||
imageToTensor["image"].setInput( image["out"] ) | ||
imageToTensor["channels"].setInput( image["out"]["channelNames"]) | ||
|
||
tensorToImage = GafferML.TensorToImage() | ||
tensorToImage["tensor"].setInput( imageToTensor["tensor"] ) | ||
tensorToImage["channels"].setInput( image["out"]["channelNames"]) | ||
|
||
self.assertImagesEqual( tensorToImage["out"], image["out"] ) | ||
|
||
imageToTensor["interleaveChannels"].setValue( True ) | ||
tensorToImage["interleavedChannels"].setValue( True ) | ||
|
||
self.assertImagesEqual( tensorToImage["out"], image["out"] ) | ||
|
||
if __name__ == "__main__": | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
########################################################################## | ||
# | ||
# Copyright (c) 2024, Cinesite VFX Ltd. All rights reserved. | ||
# | ||
# Redistribution and use in source and binary forms, with or without | ||
# modification, are permitted provided that the following conditions are | ||
# met: | ||
# | ||
# * Redistributions of source code must retain the above | ||
# copyright notice, this list of conditions and the following | ||
# disclaimer. | ||
# | ||
# * Redistributions in binary form must reproduce the above | ||
# copyright notice, this list of conditions and the following | ||
# disclaimer in the documentation and/or other materials provided with | ||
# the distribution. | ||
# | ||
# * Neither the name of John Haddon nor the names of | ||
# any other contributors to this software may be used to endorse or | ||
# promote products derived from this software without specific prior | ||
# written permission. | ||
# | ||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS | ||
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, | ||
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | ||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | ||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | ||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | ||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | ||
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | ||
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
# | ||
########################################################################## | ||
|
||
import Gaffer | ||
import GafferML | ||
|
||
Gaffer.Metadata.registerNode( | ||
|
||
GafferML.TensorToImage, | ||
|
||
plugs = { | ||
|
||
"tensor" : [ | ||
|
||
"description", | ||
""" | ||
The input tensor to be turned into an image. Typically this would be connected | ||
to the output of an Inference node that is doing image processing. | ||
""", | ||
|
||
"plugValueWidget:type", "", | ||
"nodule:type", "GafferUI::StandardNodule", | ||
|
||
], | ||
|
||
"channels" : [ | ||
|
||
"description", | ||
""" | ||
The names to give to the channels in the output image. These | ||
channels are unpacked from the tensor in the order in which they are | ||
specified. For example, an order of `[ "B", "G", "R" ]` might be | ||
needed for use with models trained on images using OpenCV | ||
conventions. An empty channel name may be used to skip a channel | ||
when unpacking. | ||
""", | ||
|
||
], | ||
|
||
"interleavedChannels" : [ | ||
|
||
"description", | ||
""" | ||
Indicates that the channels are interleaved in the input tensor, in | ||
which case they will be deinterleaved when converting to the output | ||
image. Whether or not channels are interleaved will depend on the | ||
model from which the tensor is obtained. | ||
""", | ||
|
||
], | ||
|
||
"out" : [ | ||
|
||
"description", | ||
""" | ||
The output image. | ||
""", | ||
|
||
], | ||
|
||
} | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.