-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathteleoperate_wii.py
273 lines (228 loc) · 8.94 KB
/
teleoperate_wii.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/env python
"""
Human Robot Interation, Design Project II
"""
import argparse
import sys
import rospy
import tf2_ros
import math
import numpy as np
import baxter_interface
from baxter_interface import CHECK_VERSION
from wiimote.msg import State
BASE_FRAME = 'openni_depth_frame'
FRAMES = [
'torso',
'left_shoulder',
'left_elbow',
'left_hand',
'right_shoulder',
'right_elbow',
'right_hand',
]
TEST_JOINT_ANGLES = dict()
TEST_JOINT_ANGLES['left'] = dict()
TEST_JOINT_ANGLES['right'] = dict()
TEST_JOINT_ANGLES['left']['left_s0'] = 0.0
TEST_JOINT_ANGLES['left']['left_s1'] = 0.0
TEST_JOINT_ANGLES['left']['left_e0'] = 0.0
TEST_JOINT_ANGLES['left']['left_e1'] = 0.0
TEST_JOINT_ANGLES['left']['left_w0'] = 0.0
TEST_JOINT_ANGLES['left']['left_w1'] = 0.0
TEST_JOINT_ANGLES['left']['left_w2'] = 0.0
TEST_JOINT_ANGLES['right']['right_s0'] = 0.0
TEST_JOINT_ANGLES['right']['right_s1'] = 0.0
TEST_JOINT_ANGLES['right']['right_e0'] = 0.0
TEST_JOINT_ANGLES['right']['right_e1'] = math.pi
TEST_JOINT_ANGLES['right']['right_w0'] = 0.0
TEST_JOINT_ANGLES['right']['right_w1'] = 0.0
TEST_JOINT_ANGLES['right']['right_w2'] = 0.0
def get_joint_angles(user, tfBuffer, test, mirrored):
"""
@param line: the line described in a list to process
@param names: joint name keys
"""
global theta
joint_angles = dict()
joint_angles['left'] = dict()
joint_angles['right'] = dict()
frames = get_frame_positions(user, tfBuffer)
if frames is None and not test:
# if there's a problem with tracking, don't move
return None
if test:
# use the hardcoded angles for debugging
joint_angles = TEST_JOINT_ANGLES
else:
# do the math to find joint angles!
reh = frames['right_hand'] - frames['right_elbow']
res = frames['right_shoulder'] - frames['right_elbow']
leh = frames['left_hand'] - frames['left_elbow']
les = frames['left_shoulder'] - frames['left_elbow']
rse = np.negative(res)
lse = np.negative(les)
# find down vector and normals
nt = np.cross(frames['right_shoulder'] - frames['torso'], frames['left_shoulder'] - frames['torso'])
d = np.cross(nt, frames['right_shoulder'] - frames['left_shoulder'])
rns = np.cross(d, rse)
lns = np.cross(d, lse)
lne = np.cross(leh, les)
rne = np.cross(reh, res)
# normalize vectors
reh = reh / np.linalg.norm(reh)
res = res / np.linalg.norm(res)
leh = leh / np.linalg.norm(leh)
les = les / np.linalg.norm(les)
rse = rse / np.linalg.norm(rse)
lse = lse / np.linalg.norm(lse)
nt = nt / np.linalg.norm(nt)
d = d / np.linalg.norm(d)
rns = rns / np.linalg.norm(rns)
lns = lns / np.linalg.norm(lns)
lne = lne / np.linalg.norm(lne)
rne = rne / np.linalg.norm(rne)
# do the math to find joint angles
joint_angles['left']['left_s0'] = np.arccos(np.dot(nt,lns)) - math.pi/5.0 # was + 0.0
joint_angles['left']['left_s1'] = np.arccos(np.dot(d, lse)) - math.pi/2.0
joint_angles['left']['left_e0'] = np.arccos(np.dot(nt, lne))
joint_angles['left']['left_e1'] = math.pi - np.arccos(np.dot(leh, les))
joint_angles['left']['left_w0'] = 0.0
joint_angles['left']['left_w1'] = 0.0
joint_angles['left']['left_w2'] = 0.0
joint_angles['right']['right_s0'] = np.arccos(np.dot(nt,rns)) - math.pi*7.0/8.0 # was - pi
joint_angles['right']['right_s1'] = np.arccos(np.dot(d, rse)) - math.pi/2.0
joint_angles['right']['right_e0'] = np.arccos(np.dot(nt, rne)) - math.pi
joint_angles['right']['right_e1'] = math.pi - np.arccos(np.dot(reh, res))
joint_angles['right']['right_w0'] = 0.0
joint_angles['right']['right_w1'] = 0.0
joint_angles['right']['right_w2'] = theta
if mirrored:
return joint_angles
else:
# this is the default option, where the teleoperator's
# left/right arm corresponds to the robot's left/right arm
unmirrored = dict()
unmirrored['left'] = dict()
unmirrored['right'] = dict()
unmirrored['left']['left_s0'] = joint_angles['right']['right_s0']
unmirrored['left']['left_s1'] = joint_angles['right']['right_s1']
unmirrored['left']['left_e0'] = joint_angles['right']['right_e0']
unmirrored['left']['left_e1'] = joint_angles['right']['right_e1']
unmirrored['left']['left_w0'] = 0.0
unmirrored['left']['left_w1'] = 0.0
unmirrored['left']['left_w2'] = 0.0
unmirrored['right']['right_s0'] = joint_angles['left']['left_s0']
unmirrored['right']['right_s1'] = joint_angles['left']['left_s1']
unmirrored['right']['right_e0'] = joint_angles['left']['left_e0']
unmirrored['right']['right_e1'] = joint_angles['left']['left_e1']
unmirrored['right']['right_w0'] = 0.0
unmirrored['right']['right_w1'] = 0.0
unmirrored['right']['right_w2'] = theta
return unmirrored
def get_frame_positions(user, tfBuffer):
frame_positions = dict()
try:
for frame in FRAMES:
transformation= tfBuffer.lookup_transform(BASE_FRAME, "%s_%d" % (frame, user), rospy.Time(),rospy.Duration(1.0))
translation = transformation.transform.translation
pos = np.array([translation.x, translation.y, translation.z])
frame_positions[frame] = pos
except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException) as e:
print "Problem with kinect tracking."
print e
return None
return frame_positions
def operate_gripper():
#left = baxter_interface.Gripper('left', CHECK_VERSION)
right_grip = baxter_interface.Gripper('right', CHECK_VERSION)
if B_button:
print 'button B pressed'
right_grip.close()
else:
right_grip.open()
print "button B released"
def teleoperate(rate, user, test, mirrored):
"""
Teleoperates the robot based on tf2 frames.
@param rate: rate at which to sample joint positions in ms
"""
rate = rospy.Rate(rate)
# TODO: make these attributes of a class
tfBuffer = tf2_ros.Buffer()
listener = tf2_ros.TransformListener(tfBuffer)
left = baxter_interface.Limb('left')
right = baxter_interface.Limb('right')
while not rospy.is_shutdown():
rate.sleep()
wii_listen()
# listener.waitForTransform("/torso_1","camera_depth_frame",now,rospy.Duration(4.0))
joint_angles = get_joint_angles(user, tfBuffer, test, mirrored)
print joint_angles
print 'theta = ', theta
if joint_angles is not None:
left.set_joint_positions(joint_angles['left'])
right.set_joint_positions(joint_angles['right'])
operate_gripper()
print "Rospy shutdown, exiting loop."
return True
def main():
"""
Note: This version of simply drives the joints towards the next position at
each time stamp. Because it uses Position Control it will not attempt to
adjust the movement speed to hit set points "on time".
"""
arg_fmt = argparse.RawDescriptionHelpFormatter
parser = argparse.ArgumentParser(formatter_class=arg_fmt,
description=main.__doc__)
parser.add_argument(
'-r', '--rate', type=int, default=10,
help='rate to sample the joint positions'
)
parser.add_argument(
'-t', '--test', type=bool, default=False,
help='use hardcoded test joint angles'
)
parser.add_argument(
'-u', '--user', type=int, default=1,
help='kinect user number to use'
)
parser.add_argument(
'-m', '--mirrored', type=bool, default=False,
help='mirror the teleoperators movements'
)
args = parser.parse_args(rospy.myargv()[1:])
print("Initializing node... ")
rospy.init_node("teleoperation")
print("Getting robot state... ")
rs = baxter_interface.RobotEnable(CHECK_VERSION)
init_state = rs.state().enabled
def clean_shutdown():
print("\nExiting...")
if not init_state:
print("Disabling robot...")
rs.disable()
rospy.on_shutdown(clean_shutdown)
print("Enabling robot... ")
rs.enable()
teleoperate(args.rate, args.user, args.test, args.mirrored)
def wii_listen():
#rospy.init_node('listener', anonymous=False)
rospy.Subscriber('/wiimote/state', State , wiimote_state_callback)
def wiimote_state_callback(state_data):
global theta
global B_button
gx = state_data.linear_acceleration_zeroed.x
gz = state_data.linear_acceleration_zeroed.z
theta = math.atan2(gx,gz)
B_button = state_data.buttons[5]
def declareGlobals():
global theta
global B_button
global right_gripper_state
theta = math.pi/2.0
B_button = False
right_gripper_state = False
if __name__ == '__main__':
declareGlobals()
main()