Skip to content

joowani/kq

Folders and files

NameName
Last commit message
Last commit date
Jan 29, 2022
Feb 19, 2021
Jan 31, 2021
Feb 4, 2022
Feb 18, 2021
Jan 29, 2022
Jan 31, 2021
Feb 17, 2021
Feb 18, 2021
Feb 8, 2021
Jan 31, 2021
Jan 29, 2022
Mar 23, 2021
Feb 10, 2021
Jan 29, 2022

Repository files navigation

KQ: Kafka Job Queue for Python

Build CodeQL codecov PyPI version GitHub license Python version

KQ (Kafka Queue) is a lightweight Python library which lets you enqueue and execute jobs asynchronously using Apache Kafka. It uses kafka-python under the hood.

Announcements

  • Support for Python 3.5 will be dropped from KQ version 3.0.0.
  • See releases for latest updates.

Requirements

Installation

Install using pip:

pip install kq

Getting Started

Start your Kafka instance. Example using Docker:

docker run -p 9092:9092 -e ADV_HOST=127.0.0.1 lensesio/fast-data-dev

Define your KQ worker.py module:

import logging

from kafka import KafkaConsumer
from kq import Worker

# Set up logging.
formatter = logging.Formatter("[%(levelname)s] %(message)s")
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger = logging.getLogger("kq.worker")
logger.setLevel(logging.DEBUG)
logger.addHandler(stream_handler)

# Set up a Kafka consumer.
consumer = KafkaConsumer(
    bootstrap_servers="127.0.0.1:9092",
    group_id="group",
    auto_offset_reset="latest"
)

# Set up a worker.
worker = Worker(topic="topic", consumer=consumer)
worker.start()

Start your worker:

python my_worker.py
[INFO] Starting Worker(hosts=127.0.0.1:9092 topic=topic, group=group) ...

Enqueue a function call:

import requests

from kafka import KafkaProducer
from kq import Queue

# Set up a Kafka producer.
producer = KafkaProducer(bootstrap_servers="127.0.0.1:9092")

# Set up a queue.
queue = Queue(topic="topic", producer=producer)

# Enqueue a function call.
job = queue.enqueue(requests.get, "https://google.com")

# You can also specify the job timeout, Kafka message key and partition.
job = queue.using(timeout=5, key=b"foo", partition=0).enqueue(requests.get, "https://google.com")

The worker executes the job in the background:

python my_worker.py
[INFO] Starting Worker(hosts=127.0.0.1:9092, topic=topic, group=group) ...
[INFO] Processing Message(topic=topic, partition=0, offset=0) ...
[INFO] Executing job c7bf2359: requests.api.get("https://www.google.com")
[INFO] Job c7bf2359 returned: <Response [200]>

See the documentation for more information.