-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
141 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Thu Sep 12 21:21:12 2019 | ||
@author: jpick | ||
""" | ||
|
||
import pandas as pd | ||
import numpy as np | ||
from sklearn.preprocessing import StandardScaler, LabelEncoder, MinMaxScaler | ||
from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedKFold | ||
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier | ||
from sklearn.linear_model import LogisticRegression, RidgeClassifier | ||
from sklearn.gaussian_process import GaussianProcessClassifier | ||
from sklearn.gaussian_process.kernels import RBF | ||
from sklearn.feature_selection import SelectKBest, chi2, VarianceThreshold | ||
from sklearn.svm import SVC | ||
from sklearn.metrics import accuracy_score, make_scorer | ||
from sklearn.compose import ColumnTransformer | ||
from boruta import BorutaPy | ||
import pdpipe as pdp | ||
import tensorflow as tf | ||
import kerastuner as kt | ||
|
||
|
||
|
||
|
||
np.random.seed(123) | ||
# download data and look for columns with null values | ||
data = pd.read_csv('csv files for training/train.csv') | ||
X=data.iloc[:,:55] | ||
y=data.iloc[:,-1] | ||
|
||
count_NA=[sum(X[col].isna()) for col in X.columns] | ||
print(count_NA) | ||
|
||
print(X.columns) | ||
print(X.transpose()[11:55]) | ||
|
||
#encoding and scaling the variable with pdpipe | ||
X_new=pdp.OneHotEncode().apply(X) | ||
y_new=LabelEncoder().fit_transform(y) | ||
print(y_new.dtype) | ||
numeric_cols=X.columns[1:11] | ||
X[numeric_cols].head() | ||
X_new=pdp.Scale('StandardScaler').apply(X_new) | ||
X_new=pdp.ColDrop('Id').apply(X_new) | ||
print(X_new.shape) | ||
|
||
# Using selectors to pluck out most important features | ||
selector_thres=VarianceThreshold() | ||
|
||
selector_feat=selector_thres.fit(X_new, 0.0) | ||
print(selector_feat.get_support()) | ||
|
||
K_selector=SelectKBest(k=13) | ||
K_selector_feat=K_selector.fit(X_new,y_new) | ||
print(K_selector_feat.get_support()) | ||
X_k=K_selector.transform(X_new) | ||
|
||
|
||
# using boruta to select features | ||
X_bor=X_new.values | ||
y_bor=y_new | ||
|
||
|
||
rf= RandomForestClassifier() | ||
gbc=GradientBoostingClassifier() | ||
|
||
feat_selector = BorutaPy(rf, n_estimators='auto', verbose=2, random_state=1) | ||
feat_selector.fit(X_bor,y_bor) | ||
|
||
print(feat_selector.support_) | ||
X_filtered=feat_selector.transform(X_bor) | ||
print(X_filtered.shape) | ||
|
||
# breaking the filtered datasets into train and validation sets | ||
X_train, X_val, y_train, y_val=train_test_split(X_filtered,y_new,test_size=0.1) | ||
X_k_train, X_k_val, y_K_train, y_k_val=train_test_split(X_k,y_new,test_size=0.1) | ||
|
||
m1=rf.fit(X_train,y_train) | ||
m2=gbc.fit(X_train,y_train) | ||
|
||
p1=m1.predict(X_val) | ||
p2=m2.predict(X_val) | ||
|
||
print(accuracy_score(y_val,p1)) | ||
print(accuracy_score(y_val,p2)) | ||
|
||
def build_model(hp): | ||
model_type = hp.Choice('model_type', ['random_forest', 'ridge', 'gbc']) | ||
if model_type == 'random_forest': | ||
model = RandomForestClassifier( | ||
n_estimators=hp.Int('n_estimators', 70, 120, step=10), | ||
max_depth=hp.Int('max_depth', 15, 25) | ||
) | ||
elif model_type== 'gbc': | ||
model = GradientBoostingClassifier( | ||
n_estimators=hp.Int('n_estimators', 90, 180, step=10), | ||
max_depth=hp.Int('max_depth', 1, 8), | ||
learning_rate=hp.Float('lr', 1e-3, 1, sampling='log') | ||
) | ||
else: | ||
model = RidgeClassifier( | ||
alpha=hp.Float('alpha', 1e-3, 1, sampling='log')) | ||
return model | ||
|
||
tuner = kt.tuners.Sklearn( | ||
oracle=kt.oracles.BayesianOptimization( | ||
objective=kt.Objective('score', 'max'), | ||
max_trials=10), | ||
hypermodel=build_model, | ||
scoring= make_scorer(accuracy_score), | ||
cv= StratifiedKFold(5), | ||
directory='.', | ||
project_name='my_proj') | ||
|
||
|
||
|
||
tuner.search(X_train, y_train) | ||
tuner.search(X_k_train, y_K_train) | ||
|
||
best_model = tuner.get_best_models(num_models=1)[0] | ||
|
||
best_model_2 = tuner.get_best_models(num_models=1)[0] | ||
|
||
print(best_model) | ||
print(best_model_2) | ||
|
||
pbest=best_model.predict(X_val) | ||
pbest_2=best_model_2.predict(X_k_val) | ||
|
||
print(accuracy_score(y_val,pbest)) | ||
|
||
m1=RandomForestClassifier(n_estimators=120, max_depth=19).fit(X_k_train,y_K_train) | ||
|
||
p1=m1.predict(X_k_val) | ||
|
||
print(accuracy_score(y_k_val,p1)) | ||
|
||
print(accuracy_score(y_k_val,pbest_2)) |