forked from USGS-R/drb-do-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[USGS-R#184] initial commit PP barplots
- Loading branch information
Showing
1 changed file
with
117 additions
and
0 deletions.
There are no files selected for viewing
117 changes: 117 additions & 0 deletions
117
3_visualize/src/python_scripts/compare_baseline_multitask_reps.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
# --- | ||
# jupyter: | ||
# jupytext: | ||
# text_representation: | ||
# extension: .py | ||
# format_name: light | ||
# format_version: '1.5' | ||
# jupytext_version: 1.14.4 | ||
# kernelspec: | ||
# display_name: Python 3 (ipykernel) | ||
# language: python | ||
# name: python3 | ||
# --- | ||
|
||
import pandas as pd | ||
import seaborn as sns | ||
import matplotlib.pyplot as plt | ||
|
||
validation_sites = ["01472104", "01473500", "01481500"] | ||
test_sites = ["01475530", "01475548"] | ||
|
||
models = ["0_baseline_LSTM", "2_multitask_dense"] | ||
|
||
|
||
def read_and_combine_dfs(model_ids, metric_type, partition, parent_dir): | ||
f_name = "{p}{model}/exp_{metric_type}_metrics.csv" | ||
dfs = [] | ||
for m in model_ids: | ||
df = pd.read_csv(f_name.format(p=parent_dir, model=m, metric_type=metric_type), dtype={'site_id':str}) | ||
df['model'] = m | ||
dfs.append(df) | ||
|
||
df_comb = pd.concat(dfs) | ||
df_comb = df_comb[df_comb['partition'] == partition] | ||
df_comb = df_comb[df_comb['variable'].str.startswith('do')] | ||
df_comb = df_comb[df_comb['rmse'].notna()] | ||
return df_comb | ||
|
||
|
||
df_comb_reach_new = read_and_combine_dfs(models, 'reach', 'val', "../../") | ||
df_comb_reach_new['type'] = 'new inputs' | ||
|
||
df_comb_reach_old = read_and_combine_dfs(models, "reach", 'val', "archive_221215/") | ||
df_comb_reach_old['type'] = 'old inputs' | ||
|
||
df_comb_reach = pd.concat([df_comb_reach_new, df_comb_reach_old]) | ||
|
||
# + | ||
g = sns.catplot(x='site_id', y='rmse', row='model', col='variable', data=df_comb_reach, hue='type', kind='bar', legend=False, ci='sd') | ||
g.set_xticklabels(rotation=90) | ||
for ax in g.axes.flatten(): | ||
ax.grid() | ||
ax.set_axisbelow(True) | ||
|
||
plt.legend(bbox_to_anchor=(1.05, .55)) | ||
plt.tight_layout() | ||
plt.savefig("figs/val_results_new_inputs.png") | ||
|
||
# + | ||
g = sns.catplot(x='site_id', y='rmse', col='variable', data=df_comb_reach_new, hue='model', kind='bar', legend=False, ci='sd') | ||
g.set_xticklabels(rotation=90) | ||
for ax in g.axes.flatten(): | ||
ax.grid() | ||
ax.set_axisbelow(True) | ||
|
||
plt.legend(bbox_to_anchor=(1.05, .55)) | ||
plt.tight_layout() | ||
plt.savefig("figs/val_results_new_inputs.png") | ||
# - | ||
|
||
g=sns.catplot(x='site_id', y='rmse', hue='model', col='variable', col_wrap=3, data=df_comb_reach, dodge=True, legend=False) | ||
g.set_xticklabels(rotation=90) | ||
for ax in g.axes.flatten(): | ||
ax.grid() | ||
plt.legend(bbox_to_anchor=(1.05, .55)) | ||
plt.tight_layout() | ||
plt.savefig('val_results_strip.png') | ||
|
||
# + | ||
g=sns.catplot(x='variable', y='rmse', hue='model', col='site_id', col_wrap=3, data=df_comb_reach, dodge=True, legend=False) | ||
for site_id, ax in g.axes_dict.items(): | ||
ax.grid() | ||
if site_id in validation_sites: | ||
ax.text(1, 3.2, "**Validation Site**", ha='center') | ||
|
||
|
||
plt.legend(bbox_to_anchor=(1.5, 1.15)) | ||
plt.tight_layout() | ||
plt.savefig('val_results_strip.png') | ||
# - | ||
|
||
df_comb = read_and_combine_dfs(models, 'overall', 'val', "archive_221215/") | ||
|
||
df_comb_new = read_and_combine_dfs(models, 'overall', 'val', "./") | ||
df_comb_new['type'] = 'new inputs' | ||
|
||
df_comb_old = read_and_combine_dfs(models, "overall", 'val', "archive_221215/") | ||
df_comb_old['type'] = 'old inputs' | ||
|
||
df_comb = pd.concat([df_comb_new, df_comb_old]) | ||
|
||
g = sns.catplot(x='variable', y='rmse', data=df_comb, hue='type', col='model', kind="bar") | ||
for ax in g.axes.flatten(): | ||
ax.bar_label(ax.containers[0], label_type="center") | ||
ax.bar_label(ax.containers[1], label_type="center") | ||
plt.savefig("figs/val_results_overall_new_inputs.png") | ||
|
||
# + | ||
ax = sns.barplot(x='variable', y='rmse', data=df_comb_new, hue='model') | ||
ax.bar_label(ax.containers[0], label_type="center") | ||
ax.bar_label(ax.containers[1], label_type="center") | ||
|
||
# plt.tight_layout() | ||
plt.savefig("figs/val_results_overall.png") | ||
# - | ||
|
||
|