forked from USGS-R/drb-do-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[USGS-R#45] py code for plotting hidden states
- Loading branch information
Showing
2 changed files
with
184 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
# --- | ||
# jupyter: | ||
# jupytext: | ||
# formats: ipynb,py:percent | ||
# text_representation: | ||
# extension: .py | ||
# format_name: percent | ||
# format_version: '1.3' | ||
# jupytext_version: 1.13.7 | ||
# kernelspec: | ||
# display_name: Python 3 (ipykernel) | ||
# language: python | ||
# name: python3 | ||
# --- | ||
|
||
# %% | ||
import sys | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
||
# %% | ||
sys.path.insert(0, "../../2a_model/src/models/0_baseline_LSTM/") | ||
|
||
# %% | ||
from model import LSTMModel | ||
|
||
# %% | ||
m = LSTMModel(10, 3) | ||
|
||
# %% | ||
m.load_weights("../../2a_model/out/models/0_baseline_LSTM/train_weights/") | ||
|
||
# %% | ||
data = np.load("../../2a_model/out/models/0_baseline_LSTM/prepped.npz", allow_pickle=True) | ||
|
||
# %% | ||
y = m(data['x_val']) | ||
|
||
# %% | ||
w = m.weights | ||
|
||
# %% | ||
ax = plt.imshow(w[3].numpy()) | ||
fig = plt.gcf() | ||
cbar = fig.colorbar(ax) | ||
cbar.set_label('weight value') | ||
ax = plt.gca() | ||
ax.set_yticks(list(range(10))) | ||
ax.set_yticklabels(f"h{i}" for i in range(10)) | ||
ax.set_ylabel('hidden state') | ||
ax.set_xticks(list(range(3))) | ||
ax.set_xticklabels(["DO_max", "DO_mean", "DO_min"], rotation=90) | ||
ax.set_xlabel('output variable') | ||
plt.tight_layout() | ||
plt.savefig('../out/hidden_states/out_weights.jpg', bbox_inches='tight') | ||
|
||
# %% |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
# --- | ||
# jupyter: | ||
# jupytext: | ||
# formats: ipynb,py:percent | ||
# text_representation: | ||
# extension: .py | ||
# format_name: percent | ||
# format_version: '1.3' | ||
# jupytext_version: 1.13.7 | ||
# kernelspec: | ||
# display_name: Python 3 (ipykernel) | ||
# language: python | ||
# name: python3 | ||
# --- | ||
|
||
# %% | ||
import pandas as pd | ||
import xarray as xr | ||
import matplotlib.pyplot as plt | ||
|
||
# %% [markdown] | ||
# ## load states and aux data | ||
|
||
# %% | ||
df_states = pd.read_csv("../../2a_model/out/models/0_baseline_LSTM/analyze_states/rep_0/states_trained.csv", | ||
dtype={"site_id": str}, parse_dates=["date"], infer_datetime_format=True) | ||
|
||
# %% | ||
df_aux = pd.read_csv("../../1_fetch/out/daily_aux_data.csv", | ||
dtype={"site_no": str}, parse_dates=["Date"], infer_datetime_format=True) | ||
df_aux = df_aux.rename(columns={"site_no": "site_id", "Date":"date"}) | ||
|
||
# %% | ||
site_id = "01480870" | ||
|
||
# %% | ||
df_aux_site = df_aux.query(f"site_id == '{site_id}'").set_index('date') | ||
df_states_site = df_states.query(f"site_id == '{site_id}'").set_index('date') | ||
|
||
# %% [markdown] | ||
# ## load input data | ||
|
||
# %% | ||
ds = xr.open_zarr("../../2a_model/out/well_observed_train_val_inputs.zarr/", consolidated=False) | ||
|
||
# %% | ||
df_air_temp = ds.seg_tave_air.sel(site_id=site_id).to_dataframe() | ||
|
||
# %% | ||
del df_air_temp['site_id'] | ||
del df_aux_site['site_id'] | ||
del df_states_site['site_id'] | ||
|
||
# %% | ||
df_comb = df_states_site.join(df_aux_site).join(df_air_temp) | ||
|
||
# %% [markdown] | ||
# ___ | ||
|
||
# %% [markdown] | ||
# # Comparison with Flow | ||
|
||
# %% | ||
axs = df_comb.loc[:, df_comb.columns.str.startswith('h')].plot(subplots=True, figsize=(16,20)) | ||
axs = axs.ravel() | ||
for ax in axs: | ||
ax.legend(loc="upper left") | ||
ax_twin = ax.twinx() | ||
df_comb.Flow.plot(ax=ax_twin, color="black", alpha=0.6) | ||
ax_twin.set_ylabel('flow [cfs]') | ||
plt.tight_layout() | ||
plt.savefig("../out/states_with_flow.jpg") | ||
|
||
# %% | ||
axs = df_comb.loc[:, df_comb.columns.str.startswith('h0')].plot(subplots=True, figsize=(20,5)) | ||
axs = axs.ravel() | ||
for ax in axs: | ||
ax.legend(loc="upper left") | ||
ax_twin = ax.twinx() | ||
df_comb.Flow.plot(ax=ax_twin, color="darkgray") | ||
ax_twin.set_ylabel('flow [cfs]') | ||
|
||
|
||
# %% | ||
def plot_one_state_w_flow(df_comb, state, color): | ||
axs = df_comb.loc["2018", df_comb.columns.str.startswith(state)].plot(subplots=True, figsize=(20,5), | ||
color=color, fontsize=20) | ||
axs = axs.ravel() | ||
for ax in axs: | ||
ax.legend(loc="upper left", fontsize=20) | ||
ax_twin = ax.twinx() | ||
df_comb.loc["2018", "Flow"].plot(ax=ax_twin, color="black", alpha=0.6, fontsize=20) | ||
ax_twin.set_ylabel('flow [cfs]', fontsize=20) | ||
ax.set_xlabel('date', fontsize=20) | ||
plt.tight_layout() | ||
plt.savefig(f"../out/{state}_2018_w_flow.jpg") | ||
|
||
|
||
# %% | ||
plot_one_state_w_flow(df_comb, "h0", color="#1f77b4") | ||
|
||
# %% | ||
df_comb.plot.scatter('h0', 'Flow', alpha=0.5) | ||
plt.tight_layout() | ||
plt.savefig("../out/flow_h0_scatter.jpg") | ||
|
||
# %% | ||
plot_one_state_w_flow(df_comb, "h1", "#ff7f0e") | ||
|
||
# %% [markdown] | ||
# # Comparison with Temperature | ||
|
||
# %% | ||
axs = df_comb.loc[:, df_comb.columns.str.startswith('h')].plot(subplots=True, figsize=(16,20)) | ||
axs = axs.ravel() | ||
for ax in axs: | ||
ax.legend(loc="upper left") | ||
ax_twin = ax.twinx() | ||
df_comb.seg_tave_air.plot(ax=ax_twin, color="darkgray") | ||
ax_twin.set_ylabel('avg air temp [degC]') | ||
plt.tight_layout() | ||
plt.savefig("../out/states_w_air_temp.jpg") | ||
|
||
# %% | ||
df_comb.tail() | ||
|
||
# %% |