Skip to content

jtomori/t3

Folders and files

NameName
Last commit message
Last commit date

Latest commit

b4f2926 · Mar 12, 2025

History

42 Commits
Mar 8, 2025
Mar 12, 2025
Mar 10, 2025
Mar 11, 2025
Mar 11, 2025
Mar 10, 2025
Mar 11, 2025
Mar 6, 2025
Mar 12, 2025
Mar 8, 2025
Mar 8, 2025
Mar 11, 2025
Mar 11, 2025
Mar 9, 2025

Repository files navigation

TipToi Translation (t3)

Usage

  • Once you've followed the setup instructions below you can run the application
  • Run the following from repository's root
    • python -m t3 'Rekorde im Tierreich.gme' workdir
    • This will translate Rekorde im Tierreich.gme and store the translated GME and intermediate files in the workdir
    • Run python -m t3 -h to see all available options
  • Alternatively run the application from a Docker container (see instructions below)

Development

Manual setup

  • Clone this repo with submodules: git clone --recurse-submodules [email protected]:jtomori/t3.git
  • sudo apt install sox ffmpeg
  • pip install numpy typing_extensions
  • pip install -r requirements.txt
  • Store SeamlessExpressive models in the SeamlessExpressive folder in repository's root
  • Compile libtiptoi.c: gcc tip-toi-reveng/libtiptoi.c -o libtiptoi

Docker

  • GPU inference requires NVIDIA Container Toolkit
  • Build image with docker build -t t3 .
  • Run container with docker run --runtime=nvidia --gpus all --volume ./SeamlessExpressive:/app/SeamlessExpressive --volume ./gme:/app/gme --volume ./workdir:/app/workdir --rm --name t3 t3 gme/name_of_file.gme workdir
    • Make sure that gme, SeamlessExpressive, workdir directories are present in your current directory
    • workdir will contain translated GME file along with intermediate files, CSV report
    • Omit --runtime=nvidia --gpus all for performing a CPU inference

Tests & code checks

  • python tests.py
  • ./checks.sh

Releases

v1.1 - 2025-03-12

  • Finished setup for running GPU (or CPU) inference from a Docker container

v1.0 - 2025-03-11

  • Initial release