Skip to content

Commit

Permalink
Deploy preview for PR 275 🛫
Browse files Browse the repository at this point in the history
  • Loading branch information
fraimondo committed Oct 17, 2024
1 parent 0d897cd commit c228a5f
Show file tree
Hide file tree
Showing 113 changed files with 4,278 additions and 4,894 deletions.
2 changes: 1 addition & 1 deletion pr-preview/pr-275/.buildinfo
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: 7c1805c6b19cbbd67888993d7cce7cfd
config: c55beee4e03d16cd2fd1b55a8e31e999
tags: 645f666f9bcd5a90fca523b33c5a78b7
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

This file was deleted.

This file was deleted.

Binary file modified pr-preview/pr-275/.doctrees/environment.pickle
Binary file not shown.
Binary file modified pr-preview/pr-275/.doctrees/selected_deeper_topics/CBPM.doctree
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file modified pr-preview/pr-275/.doctrees/whats_new.doctree
Binary file not shown.
Original file line number Diff line number Diff line change
Expand Up @@ -72,13 +72,13 @@ Set the logging level to info to see extra information
/home/runner/work/julearn/julearn/julearn/utils/logging.py:66: UserWarning: The '__version__' attribute is deprecated and will be removed in MarkupSafe 3.1. Use feature detection, or `importlib.metadata.version("markupsafe")`, instead.
vstring = str(getattr(module, "__version__", None))
2024-10-17 09:50:57,919 - julearn - INFO - ===== Lib Versions =====
2024-10-17 09:50:57,919 - julearn - INFO - numpy: 1.26.4
2024-10-17 09:50:57,920 - julearn - INFO - scipy: 1.14.1
2024-10-17 09:50:57,920 - julearn - INFO - sklearn: 1.5.2
2024-10-17 09:50:57,920 - julearn - INFO - pandas: 2.2.3
2024-10-17 09:50:57,920 - julearn - INFO - julearn: 0.3.4.dev37
2024-10-17 09:50:57,920 - julearn - INFO - ========================
2024-10-17 13:45:36,555 - julearn - INFO - ===== Lib Versions =====
2024-10-17 13:45:36,555 - julearn - INFO - numpy: 1.26.4
2024-10-17 13:45:36,555 - julearn - INFO - scipy: 1.14.1
2024-10-17 13:45:36,555 - julearn - INFO - sklearn: 1.5.2
2024-10-17 13:45:36,555 - julearn - INFO - pandas: 2.2.3
2024-10-17 13:45:36,555 - julearn - INFO - julearn: 0.3.4.dev41
2024-10-17 13:45:36,555 - julearn - INFO - ========================
Expand Down Expand Up @@ -153,39 +153,39 @@ vector machine classifier.

.. code-block:: none
2024-10-17 09:50:57,923 - julearn - INFO - ==== Input Data ====
2024-10-17 09:50:57,923 - julearn - INFO - Using dataframe as input
2024-10-17 09:50:57,924 - julearn - INFO - Features: ['sepal_length', 'sepal_width', 'petal_length']
2024-10-17 09:50:57,924 - julearn - INFO - Target: species
2024-10-17 09:50:57,924 - julearn - INFO - Expanded features: ['sepal_length', 'sepal_width', 'petal_length']
2024-10-17 09:50:57,924 - julearn - INFO - X_types:{}
2024-10-17 09:50:57,924 - julearn - WARNING - The following columns are not defined in X_types: ['sepal_length', 'sepal_width', 'petal_length']. They will be treated as continuous.
2024-10-17 13:45:36,559 - julearn - INFO - ==== Input Data ====
2024-10-17 13:45:36,559 - julearn - INFO - Using dataframe as input
2024-10-17 13:45:36,559 - julearn - INFO - Features: ['sepal_length', 'sepal_width', 'petal_length']
2024-10-17 13:45:36,559 - julearn - INFO - Target: species
2024-10-17 13:45:36,559 - julearn - INFO - Expanded features: ['sepal_length', 'sepal_width', 'petal_length']
2024-10-17 13:45:36,559 - julearn - INFO - X_types:{}
2024-10-17 13:45:36,559 - julearn - WARNING - The following columns are not defined in X_types: ['sepal_length', 'sepal_width', 'petal_length']. They will be treated as continuous.
/home/runner/work/julearn/julearn/julearn/prepare.py:509: RuntimeWarning: The following columns are not defined in X_types: ['sepal_length', 'sepal_width', 'petal_length']. They will be treated as continuous.
warn_with_log(
2024-10-17 09:50:57,924 - julearn - INFO - ====================
2024-10-17 09:50:57,925 - julearn - INFO -
2024-10-17 09:50:57,925 - julearn - INFO - Adding step zscore that applies to ColumnTypes<types={'continuous'}; pattern=(?:__:type:__continuous)>
2024-10-17 09:50:57,925 - julearn - INFO - Step added
2024-10-17 09:50:57,925 - julearn - INFO - Adding step svm that applies to ColumnTypes<types={'continuous'}; pattern=(?:__:type:__continuous)>
2024-10-17 09:50:57,925 - julearn - INFO - Step added
2024-10-17 09:50:57,925 - julearn - INFO - = Model Parameters =
2024-10-17 09:50:57,926 - julearn - INFO - ====================
2024-10-17 09:50:57,926 - julearn - INFO -
2024-10-17 09:50:57,926 - julearn - INFO - = Data Information =
2024-10-17 09:50:57,926 - julearn - INFO - Problem type: classification
2024-10-17 09:50:57,926 - julearn - INFO - Number of samples: 120
2024-10-17 09:50:57,926 - julearn - INFO - Number of features: 3
2024-10-17 09:50:57,926 - julearn - INFO - ====================
2024-10-17 09:50:57,926 - julearn - INFO -
2024-10-17 09:50:57,926 - julearn - INFO - Number of classes: 3
2024-10-17 09:50:57,926 - julearn - INFO - Target type: object
2024-10-17 09:50:57,927 - julearn - INFO - Class distributions: species
2024-10-17 13:45:36,560 - julearn - INFO - ====================
2024-10-17 13:45:36,560 - julearn - INFO -
2024-10-17 13:45:36,560 - julearn - INFO - Adding step zscore that applies to ColumnTypes<types={'continuous'}; pattern=(?:__:type:__continuous)>
2024-10-17 13:45:36,560 - julearn - INFO - Step added
2024-10-17 13:45:36,560 - julearn - INFO - Adding step svm that applies to ColumnTypes<types={'continuous'}; pattern=(?:__:type:__continuous)>
2024-10-17 13:45:36,560 - julearn - INFO - Step added
2024-10-17 13:45:36,561 - julearn - INFO - = Model Parameters =
2024-10-17 13:45:36,561 - julearn - INFO - ====================
2024-10-17 13:45:36,561 - julearn - INFO -
2024-10-17 13:45:36,561 - julearn - INFO - = Data Information =
2024-10-17 13:45:36,561 - julearn - INFO - Problem type: classification
2024-10-17 13:45:36,561 - julearn - INFO - Number of samples: 120
2024-10-17 13:45:36,561 - julearn - INFO - Number of features: 3
2024-10-17 13:45:36,561 - julearn - INFO - ====================
2024-10-17 13:45:36,561 - julearn - INFO -
2024-10-17 13:45:36,561 - julearn - INFO - Number of classes: 3
2024-10-17 13:45:36,562 - julearn - INFO - Target type: object
2024-10-17 13:45:36,562 - julearn - INFO - Class distributions: species
versicolor 40
virginica 40
setosa 40
Name: count, dtype: int64
2024-10-17 09:50:57,927 - julearn - INFO - Using outer CV scheme RepeatedKFold(n_repeats=5, n_splits=5, random_state=200) (incl. final model)
2024-10-17 09:50:57,927 - julearn - INFO - Multi-class classification problem detected #classes = 3.
2024-10-17 13:45:36,562 - julearn - INFO - Using outer CV scheme RepeatedKFold(n_repeats=5, n_splits=5, random_state=200) (incl. final model)
2024-10-17 13:45:36,562 - julearn - INFO - Multi-class classification problem detected #classes = 3.
Expand Down Expand Up @@ -240,8 +240,8 @@ The scores dataframe has all the values for each CV split.
<tbody>
<tr>
<th>0</th>
<td>0.004780</td>
<td>0.002671</td>
<td>0.004622</td>
<td>0.002663</td>
<td>0.916667</td>
<td>96</td>
<td>24</td>
Expand All @@ -251,8 +251,8 @@ The scores dataframe has all the values for each CV split.
</tr>
<tr>
<th>1</th>
<td>0.004710</td>
<td>0.002731</td>
<td>0.004575</td>
<td>0.002630</td>
<td>0.833333</td>
<td>96</td>
<td>24</td>
Expand All @@ -262,8 +262,8 @@ The scores dataframe has all the values for each CV split.
</tr>
<tr>
<th>2</th>
<td>0.004713</td>
<td>0.002665</td>
<td>0.004604</td>
<td>0.002679</td>
<td>0.958333</td>
<td>96</td>
<td>24</td>
Expand All @@ -273,8 +273,8 @@ The scores dataframe has all the values for each CV split.
</tr>
<tr>
<th>3</th>
<td>0.004671</td>
<td>0.002753</td>
<td>0.004775</td>
<td>0.002656</td>
<td>0.916667</td>
<td>96</td>
<td>24</td>
Expand All @@ -284,8 +284,8 @@ The scores dataframe has all the values for each CV split.
</tr>
<tr>
<th>4</th>
<td>0.004743</td>
<td>0.002676</td>
<td>0.004589</td>
<td>0.002648</td>
<td>0.833333</td>
<td>96</td>
<td>24</td>
Expand Down Expand Up @@ -538,7 +538,7 @@ the heatmap with annotations.
.. rst-class:: sphx-glr-timing

**Total running time of the script:** (0 minutes 0.553 seconds)
**Total running time of the script:** (0 minutes 0.541 seconds)


.. _sphx_glr_download_auto_examples_00_starting_plot_cm_acc_multiclass.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -70,13 +70,13 @@ Set the logging level to info to see extra information.
/home/runner/work/julearn/julearn/julearn/utils/logging.py:66: UserWarning: The '__version__' attribute is deprecated and will be removed in MarkupSafe 3.1. Use feature detection, or `importlib.metadata.version("markupsafe")`, instead.
vstring = str(getattr(module, "__version__", None))
2024-10-17 09:50:59,638 - julearn - INFO - ===== Lib Versions =====
2024-10-17 09:50:59,638 - julearn - INFO - numpy: 1.26.4
2024-10-17 09:50:59,639 - julearn - INFO - scipy: 1.14.1
2024-10-17 09:50:59,639 - julearn - INFO - sklearn: 1.5.2
2024-10-17 09:50:59,639 - julearn - INFO - pandas: 2.2.3
2024-10-17 09:50:59,639 - julearn - INFO - julearn: 0.3.4.dev37
2024-10-17 09:50:59,639 - julearn - INFO - ========================
2024-10-17 13:45:38,271 - julearn - INFO - ===== Lib Versions =====
2024-10-17 13:45:38,271 - julearn - INFO - numpy: 1.26.4
2024-10-17 13:45:38,271 - julearn - INFO - scipy: 1.14.1
2024-10-17 13:45:38,271 - julearn - INFO - sklearn: 1.5.2
2024-10-17 13:45:38,271 - julearn - INFO - pandas: 2.2.3
2024-10-17 13:45:38,271 - julearn - INFO - julearn: 0.3.4.dev41
2024-10-17 13:45:38,272 - julearn - INFO - ========================
Expand Down Expand Up @@ -248,32 +248,32 @@ for scoring.

.. code-block:: none
2024-10-17 09:50:59,813 - julearn - INFO - ==== Input Data ====
2024-10-17 09:50:59,813 - julearn - INFO - Using dataframe as input
2024-10-17 09:50:59,813 - julearn - INFO - Features: ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']
2024-10-17 09:50:59,813 - julearn - INFO - Target: target
2024-10-17 09:50:59,813 - julearn - INFO - Expanded features: ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']
2024-10-17 09:50:59,813 - julearn - INFO - X_types:{}
2024-10-17 09:50:59,813 - julearn - WARNING - The following columns are not defined in X_types: ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']. They will be treated as continuous.
2024-10-17 13:45:38,471 - julearn - INFO - ==== Input Data ====
2024-10-17 13:45:38,471 - julearn - INFO - Using dataframe as input
2024-10-17 13:45:38,471 - julearn - INFO - Features: ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']
2024-10-17 13:45:38,471 - julearn - INFO - Target: target
2024-10-17 13:45:38,471 - julearn - INFO - Expanded features: ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']
2024-10-17 13:45:38,471 - julearn - INFO - X_types:{}
2024-10-17 13:45:38,471 - julearn - WARNING - The following columns are not defined in X_types: ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']. They will be treated as continuous.
/home/runner/work/julearn/julearn/julearn/prepare.py:509: RuntimeWarning: The following columns are not defined in X_types: ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']. They will be treated as continuous.
warn_with_log(
2024-10-17 09:50:59,814 - julearn - INFO - ====================
2024-10-17 09:50:59,814 - julearn - INFO -
2024-10-17 09:50:59,814 - julearn - INFO - Adding step zscore that applies to ColumnTypes<types={'continuous'}; pattern=(?:__:type:__continuous)>
2024-10-17 09:50:59,814 - julearn - INFO - Step added
2024-10-17 09:50:59,815 - julearn - INFO - Adding step ridge that applies to ColumnTypes<types={'continuous'}; pattern=(?:__:type:__continuous)>
2024-10-17 09:50:59,815 - julearn - INFO - Step added
2024-10-17 09:50:59,815 - julearn - INFO - = Model Parameters =
2024-10-17 09:50:59,815 - julearn - INFO - ====================
2024-10-17 09:50:59,815 - julearn - INFO -
2024-10-17 09:50:59,815 - julearn - INFO - = Data Information =
2024-10-17 09:50:59,815 - julearn - INFO - Problem type: regression
2024-10-17 09:50:59,815 - julearn - INFO - Number of samples: 309
2024-10-17 09:50:59,815 - julearn - INFO - Number of features: 10
2024-10-17 09:50:59,815 - julearn - INFO - ====================
2024-10-17 09:50:59,815 - julearn - INFO -
2024-10-17 09:50:59,816 - julearn - INFO - Target type: float64
2024-10-17 09:50:59,816 - julearn - INFO - Using outer CV scheme KFold(n_splits=5, random_state=None, shuffle=False) (incl. final model)
2024-10-17 13:45:38,472 - julearn - INFO - ====================
2024-10-17 13:45:38,472 - julearn - INFO -
2024-10-17 13:45:38,472 - julearn - INFO - Adding step zscore that applies to ColumnTypes<types={'continuous'}; pattern=(?:__:type:__continuous)>
2024-10-17 13:45:38,472 - julearn - INFO - Step added
2024-10-17 13:45:38,472 - julearn - INFO - Adding step ridge that applies to ColumnTypes<types={'continuous'}; pattern=(?:__:type:__continuous)>
2024-10-17 13:45:38,472 - julearn - INFO - Step added
2024-10-17 13:45:38,473 - julearn - INFO - = Model Parameters =
2024-10-17 13:45:38,473 - julearn - INFO - ====================
2024-10-17 13:45:38,473 - julearn - INFO -
2024-10-17 13:45:38,473 - julearn - INFO - = Data Information =
2024-10-17 13:45:38,473 - julearn - INFO - Problem type: regression
2024-10-17 13:45:38,473 - julearn - INFO - Number of samples: 309
2024-10-17 13:45:38,473 - julearn - INFO - Number of features: 10
2024-10-17 13:45:38,473 - julearn - INFO - ====================
2024-10-17 13:45:38,473 - julearn - INFO -
2024-10-17 13:45:38,473 - julearn - INFO - Target type: float64
2024-10-17 13:45:38,473 - julearn - INFO - Using outer CV scheme KFold(n_splits=5, random_state=None, shuffle=False) (incl. final model)
Expand Down Expand Up @@ -328,8 +328,8 @@ The scores dataframe has all the values for each CV split.
<tbody>
<tr>
<th>0</th>
<td>0.004877</td>
<td>0.002384</td>
<td>0.004479</td>
<td>0.002371</td>
<td>-48.783874</td>
<td>247</td>
<td>62</td>
Expand All @@ -339,8 +339,8 @@ The scores dataframe has all the values for each CV split.
</tr>
<tr>
<th>1</th>
<td>0.004758</td>
<td>0.002415</td>
<td>0.004429</td>
<td>0.002276</td>
<td>-47.573568</td>
<td>247</td>
<td>62</td>
Expand All @@ -350,8 +350,8 @@ The scores dataframe has all the values for each CV split.
</tr>
<tr>
<th>2</th>
<td>0.004754</td>
<td>0.002359</td>
<td>0.004386</td>
<td>0.002298</td>
<td>-37.617474</td>
<td>247</td>
<td>62</td>
Expand All @@ -361,8 +361,8 @@ The scores dataframe has all the values for each CV split.
</tr>
<tr>
<th>3</th>
<td>0.004675</td>
<td>0.002401</td>
<td>0.004386</td>
<td>0.002298</td>
<td>-47.686852</td>
<td>247</td>
<td>62</td>
Expand All @@ -372,8 +372,8 @@ The scores dataframe has all the values for each CV split.
</tr>
<tr>
<th>4</th>
<td>0.004637</td>
<td>0.002390</td>
<td>0.004408</td>
<td>0.002270</td>
<td>-45.558655</td>
<td>248</td>
<td>61</td>
Expand Down Expand Up @@ -604,7 +604,7 @@ of true values vs predicted values.
.. rst-class:: sphx-glr-timing

**Total running time of the script:** (0 minutes 0.618 seconds)
**Total running time of the script:** (0 minutes 0.673 seconds)


.. _sphx_glr_download_auto_examples_00_starting_plot_example_regression.py:
Expand Down
Loading

0 comments on commit c228a5f

Please sign in to comment.