Skip to content

Commit

Permalink
correct formula typos
Browse files Browse the repository at this point in the history
  • Loading branch information
juanitorduz committed Aug 16, 2023
1 parent 0168f3f commit 108118b
Show file tree
Hide file tree
Showing 2 changed files with 5 additions and 5 deletions.
6 changes: 3 additions & 3 deletions Presentations/pydata_2023/revenue_retention_presentation.html
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
<link href="revenue_retention_presentation_files/libs/quarto-html/light-border.css" rel="stylesheet">
<link href="revenue_retention_presentation_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light">
<link href="revenue_retention_presentation_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8">
<meta name="generator" content="quarto-1.3.353">
<meta name="generator" content="quarto-1.3.433">

<meta name="author" content="Dr.&nbsp;Juan Orduz">
<title>Cohort Revenue &amp; Retention Analysis: A Bayesian Approach</title>
Expand Down Expand Up @@ -459,8 +459,8 @@ <h3 id="example-shifted-beta-geometric-contractual">Example: Shifted Beta Geomet
<div>
<ol type="1">
<li class="fragment"><p>An individual remains a customer of the company with constant retention probability <span class="math inline">\(1 - \theta\)</span>. This is equivalent to assuming that the duration of the customer’s relationship with the company, denoted by the random variable <span class="math inline">\(T\)</span>, is characterized by the (shifted) geometric distribution with probability mass function and survivor function given by</p>
<p><span class="math display">\[f(t) = \theta (1 - \theta)^{t - 1}, \quad t = 1, 2, \ldots\]</span></p>
<p><span class="math display">\[S(t) = \sum_{j = t}^{\infty} f(j) = (1 - \theta)^{t - 1}, \quad t = 1, 2, \ldots\]</span></p></li>
<p><span class="math display">\[f(T=t|\theta) = \theta (1 - \theta)^{t - 1}, \quad t = 1, 2, \ldots\]</span></p>
<p><span class="math display">\[S(t) = \sum_{j = t}^{\infty} f(T=j|\theta) = (1 - \theta)^{t}, \quad t = 1, 2, \ldots\]</span></p></li>
<li class="fragment"><p>Heterogeneity in <span class="math inline">\(\theta\)</span> follows a beta distribution <span class="math inline">\(\theta \sim \text{Beta}(a, b)\)</span>.</p></li>
</ol>
</div>
Expand Down
4 changes: 2 additions & 2 deletions Presentations/pydata_2023/revenue_retention_presentation.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -92,9 +92,9 @@ This is equivalent to assuming that the duration of the customer’s relationshi
variable $T$, is characterized by the (shifted) geometric distribution with probability mass function and survivor
function given by

$$f(t) = \theta (1 - \theta)^{t - 1}, \quad t = 1, 2, \ldots$$
$$f(T=t|\theta) = \theta (1 - \theta)^{t - 1}, \quad t = 1, 2, \ldots$$

$$S(t) = \sum_{j = t}^{\infty} f(j) = (1 - \theta)^{t - 1}, \quad t = 1, 2, \ldots$$
$$S(t) = \sum_{j = t}^{\infty} f(T=j|\theta) = (1 - \theta)^{t}, \quad t = 1, 2, \ldots$$

1. Heterogeneity in $\theta$ follows a beta distribution $\theta \sim \text{Beta}(a, b)$.

Expand Down

0 comments on commit 108118b

Please sign in to comment.