During the Havana release cycle we kept running into coherency issues
with trying to install all the OpenStack components into a single
environment. The issue is that syncing of requirements.txt
between
projects was an eventually consistent problem. Some projects would
update quickly, others would not. We'd never have the same versions
specified as requirements between packages.
Because of the way that python package installation with pip works, this means that if you get lucky you'll end up with a working system. If you don't you can easily break all of OpenStack on a requirements update.
An example of how bad this had gotten is that python-keystoneclient would typically be installed / uninstalled 6 times during the course of a devstack gate run during Havana. If the last version of python keystoneclient happened to be incompatible with some piece of OpenStack a very hard to diagnose break occurs.
We also had an issue with projects adding dependencies of python libraries without thinking through the long term implications of those libraries. Is the library actively maintained? Is the library of a compatible license? Does the library duplicate the function of existing libraries that we already have in requirements? Is the library python 3 compatible? Is the library something that already exists in Linux Distros that we target (Ubuntu / Fedora). The answer to many of these questions was no.
Global requirements gives us a single place where we can evaluate these things so that we can make a global decision for OpenStack on the suitability of the library.
Since Havana we've also observed significant CI disruption occuring due to upstream releases of software that are are incompatible (whether in small or large ways) with OpenStack. So Global Requirements also serves as a control point to determine the precise versions of dependencies that will be used during CI.
The mechanics of the solution are relatively simple. We maintain a
central list of all the requirements (global-requirements.txt
)
that are allowed in OpenStack projects. This is enforced for
requirements.txt
, test-requirements.txt
and extras defined in
setup.cfg
. This is maintained by hand, with changes going through CI.
We also maintain a compiled list of the exact versions, including transitive dependencies, of packages that are known to work in the OpenStack CI system. This is maintained via an automated process that calculates the list and proposes a change back to this repository. A consequence of this is that new releases of OpenStack libraries are not immediately used: they have to pass through this automated process before we can benefit from (or be harmed by) them.
global-requirements.txt
supports a subset of pip requirement file
contents. Distributions may only be referenced by name, not URL. Options
(such as -e or -f) may not be used. Version specifiers, environment markers
and comments are all permitted. A single distribution may be listed more than
once if different specifiers are required with different markers - for
instance, if a dependency has dropped Python 2.7 support.
upper-constraints.txt
is machine generated and nothing more or less than
an exact list of versions.
When USE_CONSTRAINTS
is set True
, devstack uses the pip -c
option
to pin all the libraries to known good versions. edit-constraints
can be
used to unpin a single constraint, and this is done to install libraries from
git. This is the recommended way to use devstack.
When USE_CONSTRAINTS
is set False
, devstack overwrites the
requirements.txt
and test-requirements.txt
for all installed
projects with the versions from global-requirements.txt
. Projects that are
not in projects.txt
get 'soft' updates, ones that are get 'hard' updated.
This attempts to ensure that we will get a deterministic set of requirements
installed in the test system, and it won't be a guessing game based on the
last piece of software to be installed. However due to the interactions with
transitive dependencies this doesn't actually deliver what we need, and is
not recommended.
We are working on the necessary changes to use upper-constraints.txt
in
tox jobs but it is not yet complete.
All projects that have accepted the requirements contract (as listed
in projects.txt
) are expected to run a requirements compatibility
job. This job ensures that a project can not change any dependencies to
versions not compatible with global-requirements.txt
. It also ensures that
those projects can not add a requirement that is not already in
global-requirements.txt
. This job should be proposed to infra at the same
time as proposing the change to projects.txt
in
openstack/requirements
.
If an updated requirement is proposed to OpenStack and accepted to
global-requirements.txt
, the system then also automatically pushes
a review request for the new requirements definition to the projects
that include it.
For instance: if a review is accepted to global-requirements.txt
that increases the minimum version of python-keystoneclient, the
system will submit patches to all the OpenStack projects that list
python-keystoneclient as a requirement or test requirement to match
this new version definition.
This is intended as a time saving device for projects, as they can fast approve requirements syncs and not have to manually worry about whether or not they are up to date with the global definition.
All the tools require openstack_requirements to be installed (e.g. in a Python virtualenv). They all have help, which is the authoritative documentation.
This will update the requirements in a project from the global requirements
file found in .
. Alternatively, pass --source
to use a different
global requirements file:
update-requirements --source /opt/stack/requirements /opt/stack/nova
Entries in all requirements files will have their versions updated to match the entries listed in the global requirements. Excess entries will cause errors in hard mode (the default) or be ignored in soft mode.
Compile a constraints file showing the versions resulting from installing all
of global-requirements.txt
:
generate-constraints -p /usr/bin/python2.7 -p /usr/bin/python3.4 \ -b blacklist.txt -r global-requirements.txt > new-constraints.txt
Replace all references to a package in a constraints file with a new specification. Used by devstack to enable git installations of libraries that are normally constrained:
edit-constraints oslo.db "-e file://opt/stack/oslo.db#egg=oslo.db"
Look at the Review Guidelines and make sure your change meets them.
All changes to global-requirements.txt
may dramatically alter the contents
of upper-constraints.txt
due to adding or removing transitive
dependencies. As such you should always generate a diff against the current
merged constraints, otherwise your change may fail if it is incompatible with
the current tested constraints.
Regenerating involves five steps.
Install the dependencies needed to compile various Python packages:
sudo apt-get install $(bindep -b)
Create a reference file (do this without your patch applied):
generate-constraints -p /usr/bin/python2.7 -p /usr/bin/python3.4 \ -b blacklist.txt -r global-requirements.txt > baseline
Apply your patch and generate a new reference file:
generate-constraints -p /usr/bin/python2.7 -p /usr/bin/python3.4 \ -b blacklist.txt -r global-requirements.txt > updated
Diff them:
diff -p baseline updated
Apply the patch to
upper-constraints.txt
. This may require some fiddling.edit-constraint
can do this for you when the change does not involve multiple lines for one package.
There are a set of questions that every reviewer should ask on any proposed requirements change. Proposers can make reviewing easier by including the answers to these questions in the commit message for their change.
No specifications for library versions should contain version caps
As a community we value early feedback of broken upstream requirements, so version caps should be avoided except when dealing with exceptionally unstable libraries.
If a library is exceptionally unstable, we should also be considering whether we want to replace it over time with one that is stable, or to contribute to the upstream community to help stabilize it.
Libraries should contain a sensible known working minimum version
Bare library names are bad. If it's unknown what a working minimum is, look at the output of pip freeze at the end of a successful devstack/tempest run and use that version. At least that's known to be working now.
Commit message should refer to consuming projects(s)
Preferably, the comments should also identify which feature or blueprint requires the new specification. Ideally, changes should already be proposed, so that its use can be seen.
The blacklist is for handling dependencies that cannot be constrained. For instance, linters which each project has at a different release level, and which make projects fail on every release (because they add rules) - those cannot be globally constrained unless we coordinate updating all of OpenStack to the new release at the same time - but given the volunteer and loosely coupled nature of the big tent that is infeasible. Dependencies that are only used in unconstrained places should not be blacklisted - they may be constrained in future, and there's no harm caused by constraining them today. Entries in the blacklist should have a comment explaining the reason for blacklisting.
Is the library actively maintained?
We really want some indication that the library is something we can get support on if we or our users find a bug, and that we don't have to take over and fork the library.
Pointers to recent activity upstream and a consistent release model are appreciated.
Is the library good code?
It's expected, before just telling everyone to download arbitrary 3rd party code from the internet, that the submitter has taken a deep dive into the code to get a feel on whether this code seems solid enough to depend on. That includes ensuring the upstream code has some reasonable testing baked in.
Is the library python 3 compatible?
OpenStack will eventually need to support python 3. At this point adding non python 3 compatible libraries should only be done under extreme need. It should be considered a very big exception.
Is the library license compatible?
Preferably Apache2, BSD, MIT licensed. LGPL is ok. GPL or AGPL is verboten. Any other oddball license should be rejected.
Is the library already packaged in the distros we target (Ubuntu latest / Fedora latest)?
By adding something to OpenStack
global-requirements.txt
we are basically demanding that Linux Distros package this for the next release of OpenStack. If they already have, great. If not, we should be cautious of adding it. :ref:`finding-distro-status`Is the function of this library already covered by other libraries in
global-requirements.txt
?Everyone has their own pet libraries that they like to use, but we do not need three different request mocking libraries in OpenStack.
If this new requirement is about replacing an existing library with one that's better suited for our needs, then we also need the transition plan to drop the old library in a reasonable amount of time.
Why is it impossible to use the current version definition?
Everyone likes everyone else to use the latest version of their code. However, deployers really don't like to be constantly updating things. Unless it's actually impossible to use the minimum version specified in
global-requirements.txt
, it should not be changed.Leave that decision to deployers and distros.
Changes to update the minimum version of a library developed by the OpenStack community can be approved by one reviewer, as long as the constraints are correct and the tests pass.
From the OpenStack distro support policy:
OpenStack will target its development efforts to latest Ubuntu/Fedora, but will not introduce any changes that would make it impossible to run on the latest Ubuntu LTS or latest RHEL.
As such we really need to know what the current state of packaging is on these platforms (and ideally Debian and SUSE as well).
For people unfamiliar with Linux Distro packaging you can use the following tools to search for packages:
- Ubuntu - http://packages.ubuntu.com/
- Fedora - https://apps.fedoraproject.org/packages/
If the change was proposed by the OpenStack CI bot, then if the change has passed CI, only one reviewer is needed and they should +2 +A without thinking about things.
If the change was not proposed by the OpenStack CI bot, and does not include a
global-requirements.txt
change, then it should be rejected: the CI bot
will generate an appropriate change itself. Ask in #openstack-infra if the
bot needs to be run more quickly.
Otherwise the change may be the result of recalculating the constraints which
changed when a global-requirements.txt
change is proposed. In this case, ignore
the changes to upper-constraints.txt
and review the
global-requirements.txt
component of the change.