이 git 저장소는 인하대학교 공학교육혁신센터 Tensorflow2로 배우는 머신러닝 [융합 신기술 교육 프로그램2(AA0020)] 강의 및 실습 내용을 요약정리한 내용을 담고 있습니다.
-
- Regression
- Linear Regression
- Least Square Method
- Logistic Regression
- Cost Function / Sigmoid Function
- Gradient Descent Method
- Using Tensorflow
- Linear Regression
- Logistic Regression
- MNIST Datasets
- Categorical Encoding / Softmax Function
- SGD / BGD
- Epoch / Batch
- Regression
-
- Neural Network
- Neuron Cell / Perceptron
- Neural Network
- Hidden Layer
- Backpropagation
- Using TensorFlow
- Gradient Vanishing Problem
- ReLU / LeakyReLU / ELU Function
- Optimizers
- Xavier / He Initialization
- Dropout / Batch Normalization
- Momentum / Nesterov Momentum
- AdaGrad / RMSProp / Adam
- Neural Network
-
- CNN
- Convolutional Layer
- Pooling Layer
- Toy Image
- MNIST CNN
- MNIST CNN DNN
- Example: Fashion MNIST
- Example: CIFAR10 Dataset
- Example: CatsVsDogs Dataset
- CNN
-
- RNN
- Time Sequence Forecasting
- RNN
- one to one
- one to many
- many to one
- many to many
- Multiple Layer RNN
- Example: Character RNN
- TimeDistributed Layer
- Embedding Layer
- Projection Layer
- RNN
- Gradient Vanishing in RNN
- Long Short Term Memory
- Stacked RNN
- Example: Stock Data
- Example: IMDB Dataset
- Word2Vec
- Seq2Seq
- Attention
- RNN
-
- VAE
- Image / Video Preprocessing