This repository contains the implementation code for paper:
HAP: Structure-Aware Masked Image Modeling for Human-Centric Perception
Advances in Neural Information Processing Systems (NeurIPS) 2023
[arXiv] [project page]
HAP is the first masked image modeling framework for human-centric pre-training. It leverages body structure-aware training to learn general human visual representations. It achieves SOTA performance across several human-related benchmarks.
Pre-Training Data
We use LUPerson for pre-training. To make the pre-training more efficient, we only use half of the dataset with a list named "CFS_list.pkl" from TransReID-SSL. To extract the keypoint information of data, which is the masking guidance during pre-training, ViTPose is used to perform inference on LUPerson. You can download our pose dataset here.
Put the dataset directories outside the HAP project:
root
├── HAP
├── LUPerson-data # LUPerson data
│ ├── xxx.jpg
│ └── ...
└── LUPerson-pose # LUPerson with pose keypoints
├── xxx.npy
└── ...
Conda is recommended for configuring the environment:
conda env create -f env-hap.yaml && conda activate env_hap
The default setting for pre-training is 400 epochs with total batch-size of 4096.
It may need 32 GPUs with memory larger than 32GB, such as NVIDIA V100, for pre-training.
# -------------------- Pre-Training HAP on LUPerson --------------------
cd HAP/
MODEL=pose_mae_vit_base_patch16
# Download official MAE model pre-trained on ImageNet and move it here
CKPT=mae_pretrain_vit_base.pth
# Download cfs list and move it here
CFS_PATH=cfs_list.pkl
OMP_NUM_THREADS=1 python -m torch.distributed.launch \
--nnodes=${NNODES} \
--node_rank=${RANK} \
--master_addr=${ADDRESS} \
--master_port=${PRETRAIN_PORT} \
--nproc_per_node=${NPROC_PER_NODE} \
main_pretrain.py \
--dataset LUPersonPose \
--data_path ../LUPerson-data \
--pose_path ../LUPerson-pose \
--sample_split_source ${CFS_PATH} \
--batch_size 256 \
--model ${MODEL} \
--resume ${CKPT} \
--ckpt_pos_embed 14 14 \
--mask_ratio 0.5 \
--align 0.05 \
--epochs 400 \
--blr 1.5e-4 \
--ckpt_overwrite \
--seed 0 \
--tag default
We evaluate HAP for the following downstream tasks. Click them to find implementation instructions.
- Person ReID
- Text-to-Image ReID
- 2D Pose estimation
- 3D Pose and Shape Estimation
- Pedestrian Attribute Recognition
You can download the checkpoint of the pre-trained HAP model here. The results are given below.
task | dataset | resolution | structure | result |
---|---|---|---|---|
Person ReID | MSMT17 | (256, 128) | ViT | 76.4 (mAP) |
Person ReID | MSMT17 | (384, 128) | ViT | 76.8 (mAP) |
Person ReID | MSMT17 | (256, 128) | ViT-lem | 78.0 (mAP) |
Person ReID | MSMT17 | (384, 128) | ViT-lem | 78.1 (mAP) |
Person ReID | Market-1501 | (256, 128) | ViT | 91.7 (mAP) |
Person ReID | Market-1501 | (384, 128) | ViT | 91.9 (mAP) |
Person ReID | Market-1501 | (256, 128) | ViT-lem | 93.8 (mAP) |
Person ReID | Market-1501 | (384, 128) | ViT-lem | 93.9 (mAP) |
task | dataset | resolution | training | result |
---|---|---|---|---|
2D Pose Estimation | MPII | (256, 192) | single-dataset | 91.8 (PCKh) |
2D Pose Estimation | MPII | (384, 288) | single-dataset | 92.6 (PCKh) |
2D Pose Estimation | MPII | (256, 192) | multi-dataset | 93.4 (PCKh) |
2D Pose Estimation | MPII | (384, 288) | multi-dataset | 93.6 (PCKh) |
2D Pose Estimation | COCO | (256, 192) | single-dataset | 75.9 (AP) |
2D Pose Estimation | COCO | (384, 288) | single-dataset | 77.2 (AP) |
2D Pose Estimation | COCO | (256, 192) | multi-dataset | 77.0 (AP) |
2D Pose Estimation | COCO | (384, 288) | multi-dataset | 78.2 (AP) |
2D Pose Estimation | AIC | (256, 192) | single-dataset | 31.5 (AP) |
2D Pose Estimation | AIC | (384, 288) | single-dataset | 37.7 (AP) |
2D Pose Estimation | AIC | (256, 192) | multi-dataset | 32.2 (AP) |
2D Pose Estimation | AIC | (384, 288) | multi-dataset | 38.1 (AP) |
task | dataset | result |
---|---|---|
Pedestrian Attribute Recognition | PA-100K | 86.54 (mA) |
Pedestrian Attribute Recognition | RAP | 82.91 (mA) |
Pedestrian Attribute Recognition | PETA | 88.36 (mA) |
task | dataset | result |
---|---|---|
Text-to-Image Person ReID | CUHK-PEDES | 68.05 (Rank-1) |
Text-to-Image Person ReID | ICFG-PEDES | 61.80 (Rank-1) |
Text-to-Image Person ReID | RSTPReid | 49.35 (Rank-1) |
task | dataset | result |
---|---|---|
3D Pose Estimation | 3DPW | 90.1 (MPJPE), 56.0 (PA-MPJPE), 106.3 (MPVPE) |
We acknowledge the following open source projects.
- Model: MAE MALE BEiT
- Dataset: LUPerson TransReID-SSL ViTPose
- Downstream evaluation: MALE ViTPose mmcv mmpose Rethinking_of_PAR LGUR 3DCrowdNet
- Else: Swin
@article{yuan2023hap,
title={HAP: Structure-Aware Masked Image Modeling for Human-Centric Perception},
author={Yuan, Junkun and Zhang, Xinyu and Zhou, Hao and Wang, Jian and Qiu, Zhongwei and Shao, Zhiyin and Zhang, Shaofeng and Long, Sifan and Kuang, Kun and Yao, Kun and others},
journal={Advances in Neural Information Processing Systems},
volume={36},
year={2023}
}
Feel free to star and contribute to our repository.
If you have any questions or advice, contact us through GitHub issues or email ([email protected]).