-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpanda_grasp.py
254 lines (197 loc) · 8 KB
/
panda_grasp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/env python
"""
Open-loop grasp execution using a Panda arm and wrist-mounted RealSense camera.
"""
import argparse
from pathlib import Path
import cv2
import cv_bridge
import franka_msgs.msg
import geometry_msgs.msg
import numpy as np
import rospy
import sensor_msgs.msg
from vgn import vis
from vgn.experiments.clutter_removal import State
from vgn.detection import VGN
from vgn.perception import *
from vgn.utils import ros_utils
from vgn.utils.transform import Rotation, Transform
from vgn.utils.panda_control import PandaCommander
# tag lies on the table in the center of the workspace
T_base_tag = Transform(Rotation.identity(), [0.42, 0.02, 0.21])
round_id = 0
class PandaGraspController(object):
def __init__(self, args):
self.robot_error = False
self.base_frame_id = rospy.get_param("~base_frame_id")
self.tool0_frame_id = rospy.get_param("~tool0_frame_id")
self.T_tool0_tcp = Transform.from_dict(rospy.get_param("~T_tool0_tcp")) # TODO
self.T_tcp_tool0 = self.T_tool0_tcp.inverse()
self.finger_depth = rospy.get_param("~finger_depth")
self.size = 6.0 * self.finger_depth
self.scan_joints = rospy.get_param("~scan_joints")
self.setup_panda_control()
self.tf_tree = ros_utils.TransformTree()
self.define_workspace()
self.create_planning_scene()
self.tsdf_server = TSDFServer()
self.plan_grasps = VGN(args.model, rviz=True)
print('init finished')
rospy.loginfo("Ready to take action")
def setup_panda_control(self):
rospy.Subscriber(
"/franka_state_controller/franka_states",
franka_msgs.msg.FrankaState,
self.robot_state_cb,
queue_size=1,
)
rospy.Subscriber(
"/joint_states", sensor_msgs.msg.JointState, self.joints_cb, queue_size=1
)
self.pc = PandaCommander()
self.pc.move_group.set_end_effector_link(self.tool0_frame_id)
def define_workspace(self):
z_offset = -0.06
t_tag_task = np.r_[[-0.5 * self.size, -0.5 * self.size, z_offset]]
T_tag_task = Transform(Rotation.identity(), t_tag_task)
self.T_base_task = T_base_tag * T_tag_task
self.tf_tree.broadcast_static(self.T_base_task, self.base_frame_id, "task")
rospy.sleep(1.0) # wait for the TF to be broadcasted
def create_planning_scene(self):
# collision box for table
msg = geometry_msgs.msg.PoseStamped()
msg.header.frame_id = self.base_frame_id
msg.pose = ros_utils.to_pose_msg(T_base_tag)
msg.pose.position.z -= 0.01
self.pc.scene.add_box("table", msg, size=(0.6, 0.6, 0.02))
rospy.sleep(1.0) # wait for the scene to be updated
def robot_state_cb(self, msg):
detected_error = False
if np.any(msg.cartesian_collision):
detected_error = True
for s in franka_msgs.msg.Errors.__slots__:
if getattr(msg.current_errors, s):
detected_error = True
if not self.robot_error and detected_error:
self.robot_error = True
rospy.logwarn("Detected robot error")
def joints_cb(self, msg):
self.gripper_width = msg.position[7] + msg.position[8]
def recover_robot(self):
self.pc.recover()
self.robot_error = False
rospy.loginfo("Recovered from robot error")
def run(self):
vis.clear()
vis.draw_workspace(self.size)
self.pc.move_gripper(0.08)
self.pc.home()
tsdf, pc = self.acquire_tsdf()
vis.draw_tsdf(tsdf.get_grid().squeeze(), tsdf.voxel_size)
vis.draw_points(np.asarray(pc.points))
rospy.loginfo("Reconstructed scene")
state = State(tsdf, pc)
grasps, scores, planning_time = self.plan_grasps(state)
vis.draw_grasps(grasps, scores, self.finger_depth)
rospy.loginfo("Planned grasps")
if len(grasps) == 0:
rospy.loginfo("No grasps detected")
return
grasp, score = self.select_grasp(grasps, scores)
vis.draw_grasp(grasp, score, self.finger_depth)
rospy.loginfo("Selected grasp")
self.pc.home()
label = self.execute_grasp(grasp)
rospy.loginfo("Grasp execution")
if self.robot_error:
self.recover_robot()
return
if label:
self.drop()
self.pc.home()
def acquire_tsdf(self):
self.pc.goto_joints(self.scan_joints[0])
self.tsdf_server.reset()
self.tsdf_server.integrate = True
for joint_target in self.scan_joints[1:]:
self.pc.goto_joints(joint_target)
self.tsdf_server.integrate = False
tsdf = self.tsdf_server.low_res_tsdf
pc = self.tsdf_server.high_res_tsdf.get_cloud()
return tsdf, pc
def select_grasp(self, grasps, scores):
# select the highest grasp
heights = np.empty(len(grasps))
for i, grasp in enumerate(grasps):
heights[i] = grasp.pose.translation[2]
idx = np.argmax(heights)
grasp, score = grasps[idx], scores[idx]
# make sure camera is pointing forward
rot = grasp.pose.rotation
axis = rot.as_matrix()[:, 0]
if axis[0] < 0:
grasp.pose.rotation = rot * Rotation.from_euler("z", np.pi)
return grasp, score
def execute_grasp(self, grasp):
T_task_grasp = grasp.pose
T_base_grasp = self.T_base_task * T_task_grasp
T_grasp_pregrasp = Transform(Rotation.identity(), [0.0, 0.0, -0.05])
T_grasp_retreat = Transform(Rotation.identity(), [0.0, 0.0, -0.05])
T_base_pregrasp = T_base_grasp * T_grasp_pregrasp
T_base_retreat = T_base_grasp * T_grasp_retreat
self.pc.goto_pose(T_base_pregrasp * self.T_tcp_tool0, velocity_scaling=0.2)
self.approach_grasp(T_base_grasp)
if self.robot_error:
return False
self.pc.grasp(width=0.0, force=20.0)
if self.robot_error:
return False
self.pc.goto_pose(T_base_retreat * self.T_tcp_tool0)
# lift hand
T_retreat_lift_base = Transform(Rotation.identity(), [0.0, 0.0, 0.1])
T_base_lift = T_retreat_lift_base * T_base_retreat
self.pc.goto_pose(T_base_lift * self.T_tcp_tool0)
if self.gripper_width > 0.004:
return True
else:
return False
def approach_grasp(self, T_base_grasp):
self.pc.goto_pose(T_base_grasp * self.T_tcp_tool0)
def drop(self):
self.pc.goto_joints(
[0.678, 0.097, 0.237, -1.63, -0.031, 1.756, 0.931], 0.2, 0.2
)
self.pc.move_gripper(0.08)
class TSDFServer(object):
def __init__(self):
self.cam_frame_id = rospy.get_param("~cam/frame_id")
self.cam_topic_name = rospy.get_param("~cam/topic_name")
self.intrinsic = CameraIntrinsic.from_dict(rospy.get_param("~cam/intrinsic"))
self.size = 6.0 * rospy.get_param("~finger_depth")
self.cv_bridge = cv_bridge.CvBridge()
self.tf_tree = ros_utils.TransformTree()
self.integrate = False
rospy.Subscriber(self.cam_topic_name, sensor_msgs.msg.Image, self.sensor_cb)
def reset(self):
self.low_res_tsdf = TSDFVolume(self.size, 40)
self.high_res_tsdf = TSDFVolume(self.size, 120)
def sensor_cb(self, msg):
if not self.integrate:
return
img = self.cv_bridge.imgmsg_to_cv2(msg).astype(np.float32) * 0.001
T_cam_task = self.tf_tree.lookup(
self.cam_frame_id, "task", msg.header.stamp, rospy.Duration(0.1)
)
self.low_res_tsdf.integrate(img, self.intrinsic, T_cam_task)
self.high_res_tsdf.integrate(img, self.intrinsic, T_cam_task)
# def main(args):
# rospy.init_node("panda_grasp")
# panda_grasp = PandaGraspController(args)
# while True:
# panda_grasp.run()
# if __name__ == "__main__":
# parser = argparse.ArgumentParser()
# parser.add_argument("--model", type=Path, required=True)
# args = parser.parse_args()
# main(args)