-
Notifications
You must be signed in to change notification settings - Fork 456
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2551 from jupyter-naas/linkedin-messages-count
feat: add template
- Loading branch information
Showing
1 changed file
with
330 additions
and
0 deletions.
There are no files selected for viewing
330 changes: 330 additions & 0 deletions
330
LinkedIn/LinkedIn_Rank_Direct_Conversations_by_Messages_Count.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,330 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "corresponding-inspection", | ||
"metadata": { | ||
"execution": { | ||
"iopub.execute_input": "2021-01-25T08:00:35.294800Z", | ||
"iopub.status.busy": "2021-01-25T08:00:35.294557Z", | ||
"iopub.status.idle": "2021-01-25T08:00:35.307281Z", | ||
"shell.execute_reply": "2021-01-25T08:00:35.306468Z", | ||
"shell.execute_reply.started": "2021-01-25T08:00:35.294775Z" | ||
}, | ||
"papermill": {}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"<img width=\"8%\" alt=\"LinkedIn.png\" src=\"https://raw.githubusercontent.com/jupyter-naas/awesome-notebooks/master/.github/assets/logos/LinkedIn.png\" style=\"border-radius: 15%\">" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "smooth-empire", | ||
"metadata": { | ||
"papermill": {}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"# LinkedIn - Rank Direct Conversations by Messages Count" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "b9ae9ea3-f575-4ffc-b3c9-285569effca5", | ||
"metadata": { | ||
"papermill": {}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"**Tags:** #linkedin #messages #analytics #dataframe #growth #sales" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "1a958a79-fd53-4f43-8bdf-8ba026979057", | ||
"metadata": { | ||
"papermill": {}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"**Author:** [Florent Ravenel](https://www.linkedin.com/in/florent-ravenel/)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "a7549883-358e-415b-860c-e28e04e490ab", | ||
"metadata": { | ||
"papermill": {}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"**Last update:** 2024-06-26 (Created: 2024-06-26)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "naas-description", | ||
"metadata": { | ||
"papermill": {}, | ||
"tags": [ | ||
"description" | ||
] | ||
}, | ||
"source": [ | ||
"**Description:** This notebook ranks direct conversations by message count. Don't forget to download your LinkedIn extract and use the messages.csv file as input." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "70906835-ef47-4bf6-9e68-9841d72be87e", | ||
"metadata": { | ||
"papermill": {}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"**References:**\n", | ||
"- [LinkedIn Download data](https://www.linkedin.com/mypreferences/d/download-my-data)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "moderate-honey", | ||
"metadata": { | ||
"papermill": {}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"## Input" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "import_cell", | ||
"metadata": { | ||
"papermill": {}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"### Import libraries" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "changed-romance", | ||
"metadata": { | ||
"papermill": {}, | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import requests\n", | ||
"import pandas as pd\n", | ||
"from datetime import datetime" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "continental-xerox", | ||
"metadata": { | ||
"papermill": {}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"### Setup variables" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "72e801c3-a434-446f-9575-3d3070edaf1f", | ||
"metadata": {}, | ||
"source": [ | ||
"- `linkedin_url`: URL of LinkedIn profile\n", | ||
"- `file_path`: Path to the messages.csv file\n", | ||
"- `limit`: Limit of days to get the conversations" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "diverse-maximum", | ||
"metadata": { | ||
"papermill": {}, | ||
"tags": [ | ||
"parameters" | ||
] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"linkedin_url = \"https://www.linkedin.com/in/jeremyravenel\"\n", | ||
"file_path = \"messages.csv\"\n", | ||
"limit = 30" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "inappropriate-theory", | ||
"metadata": { | ||
"execution": { | ||
"iopub.execute_input": "2021-05-15T10:12:55.887028Z", | ||
"iopub.status.busy": "2021-05-15T10:12:55.886761Z", | ||
"iopub.status.idle": "2021-05-15T10:12:55.899441Z", | ||
"shell.execute_reply": "2021-05-15T10:12:55.898476Z", | ||
"shell.execute_reply.started": "2021-05-15T10:12:55.886964Z" | ||
}, | ||
"papermill": {}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"## Model" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "a49e3013-462d-4b1f-8bd6-38fe14b1dae5", | ||
"metadata": { | ||
"papermill": {}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"### Get messages" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "ad6f4492-0c82-49a6-9c42-f9415a9ccf7f", | ||
"metadata": { | ||
"papermill": {}, | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Read csv\n", | ||
"df_conversations = pd.read_csv(file_path)\n", | ||
"\n", | ||
"# Include only \"INBOX\"\n", | ||
"df_conversations = df_conversations[df_conversations[\"FOLDER\"] == \"INBOX\"].sort_values(by=\"DATE\", ascending=False).reset_index(drop=True)\n", | ||
"print(\"Messages:\", len(df_conversations))\n", | ||
"print(\"Conversations:\", len(df_conversations[\"CONVERSATION ID\"].unique()))\n", | ||
"df_conversations.head(1)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "approved-greek", | ||
"metadata": { | ||
"papermill": {}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"## Output" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "0ed9fa57-ef5a-421d-be81-cf5848c80283", | ||
"metadata": { | ||
"papermill": {}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"### Rank Direct Conversations by Messages Count" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7553d14d-5471-4b99-8df7-1aa63730daf9", | ||
"metadata": { | ||
"papermill": {}, | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"def get_messages_counts(df_init, linkedin_url, limit):\n", | ||
" # Init\n", | ||
" public_id = linkedin_url.split(\"/in/\")[1].split(\"/\")[0]\n", | ||
" df = df_init.copy()\n", | ||
" \n", | ||
" # Groupby conversation\n", | ||
" df_output = df.groupby([\"CONVERSATION ID\"], as_index=False\n", | ||
" ).agg({\"SENDER PROFILE URL\": \"nunique\", \"CONTENT\": \"count\"}\n", | ||
" ).rename(columns={\"CONTENT\": 'COUNT'}\n", | ||
" ).sort_values(by=\"COUNT\", ascending=False\n", | ||
" ).reset_index(drop=True)\n", | ||
" \n", | ||
" # Keep only conversations (not group or one message without answer)\n", | ||
" df_output = df_output[(df_output[\"SENDER PROFILE URL\"] == 2) & (df_output[\"COUNT\"] >= 2)].drop(\"SENDER PROFILE URL\", axis=1).reset_index(drop=True)\n", | ||
" \n", | ||
" # Get details\n", | ||
" df_total = df[df[\"CONVERSATION ID\"].isin(df_output[\"CONVERSATION ID\"].unique())].groupby([\"CONVERSATION ID\", \"SENDER PROFILE URL\"], as_index=False).agg({\"CONTENT\": \"count\"})\n", | ||
" df_me = df_total[df_total[\"SENDER PROFILE URL\"].str.contains(public_id)].reset_index(drop=True).rename(columns={\"CONTENT\": 'COUNT_ME'})\n", | ||
" df_them = df_total[~df_total[\"SENDER PROFILE URL\"].str.contains(public_id)].reset_index(drop=True).rename(columns={\"CONTENT\": 'COUNT_THEM'})\n", | ||
" df_output = pd.merge(df_output, df_me.drop(\"SENDER PROFILE URL\", axis=1), how=\"left\")\n", | ||
" df_output = pd.merge(df_output, df_them, how=\"left\")\n", | ||
" \n", | ||
" # Get last messages\n", | ||
" df_last = df[[\"CONVERSATION ID\", \"DATE\"]].drop_duplicates(\"CONVERSATION ID\")\n", | ||
" df_last[\"DATE\"] = df_last[\"DATE\"].str[:-4]\n", | ||
" df_last[\"DAYS_SINCE_LAST_MESSAGE\"] = (datetime.now() - pd.to_datetime(df_last[\"DATE\"])).dt.days\n", | ||
" df_output = pd.merge(df_output, df_last, how=\"left\").rename(columns={\"DATE\": \"LAST_MESSAGE_DATE\"})\n", | ||
" \n", | ||
" # Filter on limit\n", | ||
" df_output = df_output[df_output[\"DAYS_SINCE_LAST_MESSAGE\"] <= limit]\n", | ||
" return df_output.reset_index(drop=True)\n", | ||
"\n", | ||
"df_messages_stat = get_messages_counts(df_conversations, linkedin_url, limit)\n", | ||
"print(f\"Conversations over the last {limit} days:\", len(df_messages_stat))\n", | ||
"df_messages_stat" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "cbb54439-55b9-49dd-bb79-62949f24d7ba", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.6" | ||
}, | ||
"naas": { | ||
"notebook_id": "87b880ff840a772458fb40959783a6f1c58c8ade4b163685888a411f3096a25e", | ||
"notebook_path": "LinkedIn/LinkedIn_Send_conversation_to_HubSpot_communication.ipynb" | ||
}, | ||
"papermill": { | ||
"default_parameters": {}, | ||
"environment_variables": {}, | ||
"parameters": {}, | ||
"version": "2.3.3" | ||
}, | ||
"widgets": { | ||
"application/vnd.jupyter.widget-state+json": { | ||
"state": {}, | ||
"version_major": 2, | ||
"version_minor": 0 | ||
} | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |