forked from Rudrabha/Wav2Lip
-
Notifications
You must be signed in to change notification settings - Fork 52
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
85a0e8d
commit 75de7f4
Showing
1 changed file
with
225 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,225 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "f1e90f25", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Step 1: Install dependency\n", | ||
"!pip install ffmpeg-python\n", | ||
"\n", | ||
"# Step 2: Clone the Wav2Lip repository\n", | ||
"!git clone https://github.com/justinjohn0306/Wav2Lip\n", | ||
"\n", | ||
"# Step 3: Download pretrained model\n", | ||
"import requests\n", | ||
"url = \"https://iiitaphyd-my.sharepoint.com/personal/radrabha_m_research_iiit_ac_in/_layouts/15/download.aspx?share=EdjI7bZlgApMqsVoEUUXpLsBxqXbn5z8VTmoxp55YNDcIA\"\n", | ||
"response = requests.get(url)\n", | ||
"\n", | ||
"with open(\"Wav2Lip/checkpoints/wav2lip_gan.pth\", \"wb\") as f:\n", | ||
" f.write(response.content)\n", | ||
" \n", | ||
"# Step 4: Install the required dependencies for Wav2Lip\n", | ||
"!cd Wav2Lip && pip install -r requirements.txt\n", | ||
"!pip install pyaudio\n", | ||
"\n", | ||
"\n", | ||
"# Step 5: Download pretrained model for face detection\n", | ||
"url = \"https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth\"\n", | ||
"response = requests.get(url)\n", | ||
"\n", | ||
"with open(\"Wav2Lip/face_detection/detection/sfd/s3fd.pth\", \"wb\") as f:\n", | ||
" f.write(response.content)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "8e86c988", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"import subprocess\n", | ||
"from urllib import parse as urlparse\n", | ||
"\n", | ||
"# Step 1: Install yt-dlp\n", | ||
"subprocess.run(['pip', 'install', 'yt-dlp'])\n", | ||
"\n", | ||
"# Step 2: Define YouTube URL and Video ID\n", | ||
"YOUTUBE_URL = 'https://www.youtube.com/watch?v=vAnWYLTdvfY'\n", | ||
"url_data = urlparse.urlparse(YOUTUBE_URL)\n", | ||
"query = urlparse.parse_qs(url_data.query)\n", | ||
"YOUTUBE_ID = query[\"v\"][0]\n", | ||
"\n", | ||
"# Remove previous input video\n", | ||
"if os.path.isfile('input_vid.mp4'):\n", | ||
" os.remove('input_vid.mp4')\n", | ||
"\n", | ||
"# Trim video (start, end) seconds\n", | ||
"start = 35\n", | ||
"end = 62\n", | ||
"interval = end - start\n", | ||
"\n", | ||
"# Step 3: Download and trim the YouTube video\n", | ||
"subprocess.run(['yt-dlp', '-f', 'bestvideo[ext=mp4]', '--output', \"youtube.%(ext)s\", f'https://www.youtube.com/watch?v={YOUTUBE_ID}'])\n", | ||
"\n", | ||
"# Cut the video using FFmpeg\n", | ||
"subprocess.run(['ffmpeg', '-y', '-i', 'youtube.mp4', '-ss', str(start), '-t', str(interval), '-async', '1', 'input_vid.mp4'])\n", | ||
"\n", | ||
"# Display video.\n", | ||
"from IPython.display import HTML\n", | ||
"from base64 import b64encode\n", | ||
"\n", | ||
"def show_video(path):\n", | ||
" mp4 = open(path, 'rb').read()\n", | ||
" data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n", | ||
" return HTML(f\"\"\"<video width=600 controls><source src=\"{data_url}\"></video>\"\"\")\n", | ||
"\n", | ||
"# Preview the trimmed video\n", | ||
"show_video('input_vid.mp4')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7da8e818", | ||
"metadata": { | ||
"scrolled": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"from IPython.display import Audio\n", | ||
"from IPython.core.display import display\n", | ||
"\n", | ||
"upload_method = 'Path' # Change this to 'Record' or 'Path'\n", | ||
"\n", | ||
"# Remove previous input audio\n", | ||
"if os.path.isfile('input_audio.wav'):\n", | ||
" os.remove('input_audio.wav')\n", | ||
"\n", | ||
"def display_audio():\n", | ||
" display(Audio('input_audio.wav'))\n", | ||
"\n", | ||
"if upload_method == 'Record':\n", | ||
" import pyaudio\n", | ||
" import wave\n", | ||
"\n", | ||
" CHUNK = 1024\n", | ||
" FORMAT = pyaudio.paInt16\n", | ||
" CHANNELS = 1\n", | ||
" RATE = 16000\n", | ||
" RECORD_SECONDS = 5\n", | ||
" WAVE_OUTPUT_FILENAME = \"input_audio.wav\"\n", | ||
"\n", | ||
" p = pyaudio.PyAudio()\n", | ||
"\n", | ||
" stream = p.open(format=FORMAT,\n", | ||
" channels=CHANNELS,\n", | ||
" rate=RATE,\n", | ||
" input=True,\n", | ||
" frames_per_buffer=CHUNK)\n", | ||
"\n", | ||
" print(\"Recording...\")\n", | ||
"\n", | ||
" frames = []\n", | ||
"\n", | ||
" for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):\n", | ||
" data = stream.read(CHUNK)\n", | ||
" frames.append(data)\n", | ||
"\n", | ||
" print(\"Finished recording.\")\n", | ||
"\n", | ||
" stream.stop_stream()\n", | ||
" stream.close()\n", | ||
" p.terminate()\n", | ||
"\n", | ||
" wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')\n", | ||
" wf.setnchannels(CHANNELS)\n", | ||
" wf.setsampwidth(p.get_sample_size(FORMAT))\n", | ||
" wf.setframerate(RATE)\n", | ||
" wf.writeframes(b''.join(frames))\n", | ||
" wf.close()\n", | ||
"\n", | ||
" display_audio()\n", | ||
"\n", | ||
"elif upload_method == 'Path':\n", | ||
" # Add the full path to your audio\n", | ||
" PATH_TO_YOUR_AUDIO = 'C:/Users/justi/OneDrive/Desktop/wav2lip/Wav2Lip/input_audio.wav'\n", | ||
"\n", | ||
" # Load audio with specified sampling rate\n", | ||
" import librosa\n", | ||
" audio, sr = librosa.load(PATH_TO_YOUR_AUDIO, sr=None)\n", | ||
"\n", | ||
" # Save audio with specified sampling rate\n", | ||
" import soundfile as sf\n", | ||
" sf.write('input_audio.wav', audio, sr, format='wav')\n", | ||
"\n", | ||
" display_audio()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "63289945", | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Define the parameters for the Wav2Lip model\n", | ||
"pad_top = 0\n", | ||
"pad_bottom = 10\n", | ||
"pad_left = 0\n", | ||
"pad_right = 0\n", | ||
"rescaleFactor = 1\n", | ||
"nosmooth = False\n", | ||
"\n", | ||
"# Set the path to the Wav2Lip model and input files\n", | ||
"checkpoint_path = \"checkpoints/wav2lip_gan.pth\"\n", | ||
"input_face = \"input_vid.mp4\"\n", | ||
"input_audio = \"input_audio.wav\"\n", | ||
"\n", | ||
"# Run the Wav2Lip model\n", | ||
"!cd Wav2Lip && python inference.py --checkpoint_path {checkpoint_path} --face {input_face} --audio {input_audio} --pads {pad_top} {pad_bottom} {pad_left} {pad_right} --resize_factor {rescaleFactor} {\"--nosmooth\" if nosmooth else \"\"}\n", | ||
"\n", | ||
"# Preview the output video\n", | ||
"print(\"Final Video Preview\")\n", | ||
"print(\"Find the output video at\", 'Wav2Lip/results/result_voice.mp4')\n", | ||
"show_video('Wav2Lip/results/result_voice.mp4')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "3fbafa56", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.11" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |