Skip to content

kaiko-ai/PAM

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Prognostic AI-monitoring

This repository contains the code of our research on prognostic AI-monitoring: a prototype for automatic response evaluation to treatment of cancer patients with advanced disease based on deep learning image-to-image registration.

🚧 This research is still in its preliminary phase, further development and validation is warrant before clinical use.

Graphical Abstract

pam

Requirements

  • Python 3.6
  • Tensorflow 1.15.0
  • Keras
  • Scikit-Learn
  • Pandas
  • SimpleITK

VoxelMorph, Neuron and Frida are already included in the libs folder.

Parts of Keras-Group-Normalization and Recursive-Cascaded-Networks are reused in the main code.

Installing requirements using Anaconda

  • Virtual environment

        $ conda create --name tf-1.15
        $ conda activate tf-1.15
    
  • Installing packages inside the virtual environment

        $ conda install -c anaconda tensorflow-gpu==1.15
        $ conda install -c anaconda scikit-learn
        $ conda install -c anaconda pandas
        $ conda install -c simpleitk simpleitk
        $ conda install -c conda-forge keras
        $ conda install -c conda-forge nibabel
        $ conda install -c conda-forge tqdm
        $ conda install -c anaconda pillow
        $ conda install -c conda-forge matplotlib
    

Publications

Stefano Trebeschi, Zuhir Bodalal, Thierry N. Boellaard, Teresa M. Tareco Bucho, Silvia G. Drago, Ieva Kurilova, Adriana M. Calin-Vainak, Andrea Delli Pizzi, Mirte Muller, Karlijn Hummelink, Koen J. Hartemink, Thi Dan Linh Nguyen-Kim, Egbert F. Smit, Hugo J. Aerts and Regina G. Beets-Tan; Prognostic value of deep learning mediated treatment monitoring in lung cancer patients receiving immunotherapy, Frontiers in Oncology, Cancer Imaging and Imaging directed Interventions, 2021 doi: 10.3389/fonc.2021.609054 (it's open access!)

Stefano Trebeschi, Zuhir Bodalal, Nick van Dijk, Thierry N. Boellaard, Paul Apfaltrer, Teresa M. Tareco Bucho, Thi Dan Linh Nguyen-Kim, Michiel S. van der Heijden, Hugo J. W. L. Aerts and Regina G. H. Beets-Tan; Development of a Prognostic AI-Monitor for Metastatic Urothelial Cancer Patients Receiving Immunotherapy, Frontiers in Oncology, Genitourinary Oncology, 2021 doi: 10.3389/fonc.2021.637804 (it's also open access!)

About

Prognostic AI-Monitoring

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%