Skip to content

Commit

Permalink
Cotran/hallucination (#208)
Browse files Browse the repository at this point in the history
  • Loading branch information
cotran2 authored Oct 22, 2024
1 parent ea76d85 commit 8495f89
Show file tree
Hide file tree
Showing 3 changed files with 137 additions and 10 deletions.
1 change: 1 addition & 0 deletions crates/Cargo.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 1 addition & 0 deletions crates/prompt_gateway/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -26,3 +26,4 @@ sha2 = "0.10.8"
[dev-dependencies]
proxy-wasm-test-framework = { git = "https://github.com/katanemo/test-framework.git", branch = "new" }
serial_test = "3.1.1"
pretty_assertions = "1.4.1"
145 changes: 135 additions & 10 deletions crates/prompt_gateway/src/hallucination.rs
Original file line number Diff line number Diff line change
@@ -1,31 +1,63 @@
use common::{common_types::open_ai::Message, consts::USER_ROLE};

pub fn extract_messages_for_hallucination(messages: &[Message]) -> Vec<String> {
let all_user_messages = messages
.iter()
.filter(|m| m.role == USER_ROLE)
.map(|m| m.content.as_ref().unwrap().clone())
.collect::<Vec<String>>();
all_user_messages
use common::{
common_types::open_ai::Message,
consts::{ARCH_MODEL_PREFIX, ASSISTANT_ROLE, USER_ROLE},
};

pub fn extract_messages_for_hallucination(messages: &Vec<Message>) -> Vec<String> {
let mut arch_assistant = false;
let mut user_messages = Vec::new();
if messages.len() >= 2 {
let latest_assistant_message = &messages[messages.len() - 2];
if let Some(model) = latest_assistant_message.model.as_ref() {
if model.starts_with(ARCH_MODEL_PREFIX) {
arch_assistant = true;
}
}
}
if arch_assistant {
for message in messages.iter().rev() {
if let Some(model) = message.model.as_ref() {
if !model.starts_with(ARCH_MODEL_PREFIX) {
if message.role == ASSISTANT_ROLE {
break;
}
}
}
if message.role == USER_ROLE {
if let Some(content) = &message.content {
user_messages.push(content.clone());
}
}
}
} else if let Some(message) = messages.last() {
if let Some(content) = &message.content {
user_messages.push(content.clone());
}
}
user_messages.reverse(); // Reverse to maintain the original order
return user_messages;
}

#[cfg(test)]
mod test {
use pretty_assertions::assert_eq;
use common::common_types::open_ai::Message;

use super::extract_messages_for_hallucination;

#[test]
fn test_hallucination_message() {
fn test_hallucination_message_simple() {
let test_str = r#"
[
{
"role": "system",
"model" : "gpt-3.5-turbo",
"content": "You are a helpful assistant.\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>\n{\"type\": \"function\", \"function\": {\"name\": \"headcount\", \"description\": \"Get headcount data for a region by staffing type\", \"parameters\": {\"properties\": {\"staffing_type\": {\"type\": \"str\", \"description\": \"The staffing type like contract, fte or agency\"}, \"region\": {\"type\": \"str\", \"description\": \"the geographical region for which you want headcount data.\"}}, \"required\": [\"staffing_type\", \"region\"]}}}\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call>"
},
{ "role": "user", "content": "tell me about headcount data" },
{
"role": "assistant",
"model": "Arch-Function-1.5B",
"content": "The \"headcount\" tool provides information about the number of employees in a specific region based on the type of staffing used. It requires two parameters: \"staffing_type\" and \"region\". The \"staffing_type\" parameter specifies the type of staffing, such as contract, full-time equivalent (fte), or agency. The \"region\" parameter specifies the geographical region for which you want headcount data."
},
{ "role": "user", "content": "europe and for fte" }
Expand All @@ -36,4 +68,97 @@ mod test {
let messages_for_halluncination = extract_messages_for_hallucination(&messages);
assert_eq!(messages_for_halluncination.len(), 2);
}
#[test]
fn test_hallucination_message_medium() {
let test_str = r#"
[
{
"role": "system",
"model" : "gpt-3.5-turbo",
"content": "You are a helpful assistant.\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>\n{\"type\": \"function\", \"function\": {\"name\": \"headcount\", \"description\": \"Get headcount data for a region by staffing type\", \"parameters\": {\"properties\": {\"staffing_type\": {\"type\": \"str\", \"description\": \"The staffing type like contract, fte or agency\"}, \"region\": {\"type\": \"str\", \"description\": \"the geographical region for which you want headcount data.\"}}, \"required\": [\"staffing_type\", \"region\"]}}}\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call>"
},
{ "role": "user", "content": "Hello" },
{
"role": "assistant",
"model": "gpt-3.5-turbo",
"content": "Hi there!"
},
{ "role": "user", "content": "tell me about headcount data" },
{
"role": "assistant",
"model": "Arch-Function-1.5B",
"content": "The \"headcount\" tool provides information about the number of employees in a specific region based on the type of staffing used. It requires two parameters: \"staffing_type\" and \"region\". The \"staffing_type\" parameter specifies the type of staffing, such as contract, full-time equivalent (fte), or agency. The \"region\" parameter specifies the geographical region for which you want headcount data."
},
{ "role": "user", "content": "europe" }
,
{
"role": "system",
"model": "Arch-Function-1.5B",
"content": "It seems like you are asking for headcount data for Europe. Could you please specify the staffing type?"
},
{ "role": "user", "content": "fte" }
]
"#;

let messages: Vec<Message> = serde_json::from_str(test_str).unwrap();
let messages_for_halluncination = extract_messages_for_hallucination(&messages);
println!("{:?}", messages_for_halluncination);
assert_eq!(messages_for_halluncination.len(), 3);
}
#[test]
fn test_hallucination_message_long() {
let test_str = r#"
[
{
"role": "system",
"model" : "gpt-3.5-turbo",
"content": "You are a helpful assistant.\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>\n{\"type\": \"function\", \"function\": {\"name\": \"headcount\", \"description\": \"Get headcount data for a region by staffing type\", \"parameters\": {\"properties\": {\"staffing_type\": {\"type\": \"str\", \"description\": \"The staffing type like contract, fte or agency\"}, \"region\": {\"type\": \"str\", \"description\": \"the geographical region for which you want headcount data.\"}}, \"required\": [\"staffing_type\", \"region\"]}}}\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call>"
},
{ "role": "user", "content": "Hello" },
{
"role": "assistant",
"model": "gpt-3.5-turbo",
"content": "Hi there!"
},
{ "role": "user", "content": "tell me about headcount data" },
{
"role": "assistant",
"model": "Arch-Function-1.5B",
"content": "The \"headcount\" tool provides information about the number of employees in a specific region based on the type of staffing used. It requires two parameters: \"staffing_type\" and \"region\". The \"staffing_type\" parameter specifies the type of staffing, such as contract, full-time equivalent (fte), or agency. The \"region\" parameter specifies the geographical region for which you want headcount data."
},
{ "role": "user", "content": "europe" },
{
"role": "system",
"model": "Arch-Function-1.5B",
"content": "It seems like you are asking for headcount data for Europe. Could you please specify the staffing type?"
},
{ "role": "user", "content": "fte" },
{
"role": "assistant",
"model": "gpt-3.5-turbo",
"content": "The headcount is 50000"
},
{ "role": "user", "content": "tell me about the weather" },
{
"role": "assistant",
"model": "Arch-Function-1.5B",
"content" : "The weather forcast tools requires 2 parameters: city and days. Please specify"
},
{ "role": "user", "content": "Seattle" },
{
"role": "system",
"model": "Arch-Function-1.5B",
"content": "It seems like you are asking for weather data for Seattle. Could you please specify the days?"
},
{ "role": "user", "content": "7 days" }
]
"#;

let messages: Vec<Message> = serde_json::from_str(test_str).unwrap();
let messages_for_halluncination = extract_messages_for_hallucination(&messages);
println!("{:?}", messages_for_halluncination);
assert_eq!(messages_for_halluncination.len(), 3);
assert_eq!(["tell me about the weather", "Seattle", "7 days"], messages_for_halluncination.as_slice());
}

}

0 comments on commit 8495f89

Please sign in to comment.