Skip to content

Commit

Permalink
Merge branch 'kazewong:jim-dev' into jim-dev
Browse files Browse the repository at this point in the history
  • Loading branch information
thomasckng authored Sep 11, 2024
2 parents ab86389 + 24235c2 commit 17f01fb
Show file tree
Hide file tree
Showing 3 changed files with 146 additions and 150 deletions.
138 changes: 0 additions & 138 deletions example/GW150914.py

This file was deleted.

133 changes: 133 additions & 0 deletions example/GW150914_IMRPhenomD.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
import jax
import jax.numpy as jnp

from jimgw.jim import Jim
from jimgw.prior import CombinePrior, UniformPrior, CosinePrior, SinePrior, PowerLawPrior
from jimgw.single_event.detector import H1, L1
from jimgw.single_event.likelihood import TransientLikelihoodFD
from jimgw.single_event.waveform import RippleIMRPhenomD
from jimgw.transforms import BoundToUnbound
from jimgw.single_event.transforms import ComponentMassesToChirpMassSymmetricMassRatioTransform, SkyFrameToDetectorFrameSkyPositionTransform, ComponentMassesToChirpMassMassRatioTransform
from jimgw.single_event.utils import Mc_q_to_m1_m2
from flowMC.strategy.optimization import optimization_Adam

jax.config.update("jax_enable_x64", True)

###########################################
########## First we grab data #############
###########################################

# first, fetch a 4s segment centered on GW150914
gps = 1126259462.4
duration = 4
post_trigger_duration = 2
start_pad = duration - post_trigger_duration
end_pad = post_trigger_duration
fmin = 20.0
fmax = 1024.0

ifos = [H1, L1]

for ifo in ifos:
ifo.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2)

M_c_min, M_c_max = 10.0, 80.0
eta_min, eta_max = 0.2, 0.25
# m_1_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_max)[0], Mc_q_to_m1_m2(M_c_max, q_min)[0], parameter_names=["m_1"])
# m_2_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_min)[1], Mc_q_to_m1_m2(M_c_max, q_max)[1], parameter_names=["m_2"])
Mc_prior = UniformPrior(M_c_min, M_c_max, parameter_names=["M_c"])
eta_prior = UniformPrior(eta_min, eta_max, parameter_names=["eta"])
s1z_prior = UniformPrior(-1.0, 1.0, parameter_names=["s1_z"])
s2z_prior = UniformPrior(-1.0, 1.0, parameter_names=["s2_z"])
dL_prior = PowerLawPrior(1.0, 2000.0, 2.0, parameter_names=["d_L"])
t_c_prior = UniformPrior(-0.05, 0.05, parameter_names=["t_c"])
phase_c_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["phase_c"])
iota_prior = SinePrior(parameter_names=["iota"])
psi_prior = UniformPrior(0.0, jnp.pi, parameter_names=["psi"])
ra_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["ra"])
dec_prior = CosinePrior(parameter_names=["dec"])

prior = CombinePrior(
[
Mc_prior,
eta_prior,
s1z_prior,
s2z_prior,
dL_prior,
t_c_prior,
phase_c_prior,
iota_prior,
psi_prior,
ra_prior,
dec_prior,
]
)

sample_transforms = [
# ComponentMassesToChirpMassMassRatioTransform,
BoundToUnbound(name_mapping = (["M_c"], ["M_c_unbounded"]), original_lower_bound=M_c_min, original_upper_bound=M_c_max),
BoundToUnbound(name_mapping = (["eta"], ["eta_unbounded"]), original_lower_bound=eta_min, original_upper_bound=eta_max),
BoundToUnbound(name_mapping = (["s1_z"], ["s1_z_unbounded"]) , original_lower_bound=-1.0, original_upper_bound=1.0),
BoundToUnbound(name_mapping = (["s2_z"], ["s2_z_unbounded"]) , original_lower_bound=-1.0, original_upper_bound=1.0),
BoundToUnbound(name_mapping = (["d_L"], ["d_L_unbounded"]) , original_lower_bound=1.0, original_upper_bound=2000.0),
BoundToUnbound(name_mapping = (["t_c"], ["t_c_unbounded"]) , original_lower_bound=-0.05, original_upper_bound=0.05),
BoundToUnbound(name_mapping = (["phase_c"], ["phase_c_unbounded"]) , original_lower_bound=0.0, original_upper_bound=2 * jnp.pi),
BoundToUnbound(name_mapping = (["iota"], ["iota_unbounded"]), original_lower_bound=0., original_upper_bound=jnp.pi),
BoundToUnbound(name_mapping = (["psi"], ["psi_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi),
SkyFrameToDetectorFrameSkyPositionTransform(gps_time=gps, ifos=ifos),
BoundToUnbound(name_mapping = (["zenith"], ["zenith_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi),
BoundToUnbound(name_mapping = (["azimuth"], ["azimuth_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi),
]

likelihood_transforms = [
# ComponentMassesToChirpMassSymmetricMassRatioTransform,
]

likelihood = TransientLikelihoodFD(
ifos,
waveform=RippleIMRPhenomD(),
trigger_time=gps,
duration=4,
post_trigger_duration=2,
)


mass_matrix = jnp.eye(11)
mass_matrix = mass_matrix.at[1, 1].set(1e-3)
mass_matrix = mass_matrix.at[5, 5].set(1e-3)
local_sampler_arg = {"step_size": mass_matrix * 3e-3}

Adam_optimizer = optimization_Adam(n_steps=3000, learning_rate=0.01, noise_level=1)

n_epochs = 30
n_loop_training = 20
learning_rate = 1e-4


jim = Jim(
likelihood,
prior,
sample_transforms=sample_transforms,
likelihood_transforms=likelihood_transforms,
n_loop_training=n_loop_training,
n_loop_production=20,
n_local_steps=10,
n_global_steps=1000,
n_chains=500,
n_epochs=n_epochs,
learning_rate=learning_rate,
n_max_examples=30000,
n_flow_samples=100000,
momentum=0.9,
batch_size=30000,
use_global=True,
train_thinning=1,
output_thinning=10,
local_sampler_arg=local_sampler_arg,
strategies=[Adam_optimizer, "default"],
verbose=True
)

jim.sample(jax.random.PRNGKey(42))
# jim.get_samples()
# jim.print_summary()
25 changes: 13 additions & 12 deletions src/jimgw/jim.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,18 +104,19 @@ def posterior(self, params: Float[Array, " n_dim"], data: dict):

def sample(self, key: PRNGKeyArray, initial_position: Array = jnp.array([])):
if initial_position.size == 0:
initial_guess = []
for _ in range(self.sampler.n_chains):
flag = True
while flag:
key = jax.random.split(key)[1]
guess = self.prior.sample(key, 1)
for transform in self.sample_transforms:
guess = transform.forward(guess)
guess = jnp.array([i for i in guess.values()]).T[0]
flag = not jnp.all(jnp.isfinite(guess))
initial_guess.append(guess)
initial_position = jnp.array(initial_guess)
initial_position = jnp.zeros((self.sampler.n_chains, self.prior.n_dim)) + jnp.nan

while not jax.tree.reduce(jnp.logical_and, jax.tree.map(lambda x: jnp.isfinite(x), initial_position)).all():
non_finite_index = jnp.any(~jax.tree.reduce(jnp.logical_and, jax.tree.map(lambda x: jnp.isfinite(x), initial_position)),axis=1)

key, subkey = jax.random.split(key)
guess = self.prior.sample(subkey, self.sampler.n_chains)
for transform in self.sample_transforms:
guess = jax.vmap(transform.forward)(guess)
guess = jnp.array(jax.tree.leaves({key: guess[key] for key in self.parameter_names})).T
finite_guess = jnp.where(jnp.all(jax.tree.map(lambda x: jnp.isfinite(x), guess),axis=1))[0]
common_length = min(len(finite_guess), len(non_finite_index))
initial_position = initial_position.at[non_finite_index[:common_length]].set(guess[:common_length])
self.sampler.sample(initial_position, None) # type: ignore

def maximize_likelihood(
Expand Down

0 comments on commit 17f01fb

Please sign in to comment.