-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #123 from thomasckng/transform
Use uniform in component mass in test
- Loading branch information
Showing
4 changed files
with
213 additions
and
35 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
import jax | ||
import jax.numpy as jnp | ||
|
||
from jimgw.jim import Jim | ||
from jimgw.prior import CombinePrior, UniformPrior, CosinePrior, SinePrior, PowerLawPrior | ||
from jimgw.single_event.detector import H1, L1 | ||
from jimgw.single_event.likelihood import HeterodynedTransientLikelihoodFD | ||
from jimgw.single_event.waveform import RippleIMRPhenomD | ||
from jimgw.transforms import BoundToUnbound | ||
from jimgw.single_event.transforms import ComponentMassesToChirpMassSymmetricMassRatioTransform, SkyFrameToDetectorFrameSkyPositionTransform, ComponentMassesToChirpMassMassRatioTransform | ||
from jimgw.single_event.utils import Mc_q_to_m1_m2 | ||
from flowMC.strategy.optimization import optimization_Adam | ||
|
||
jax.config.update("jax_enable_x64", True) | ||
|
||
########################################### | ||
########## First we grab data ############# | ||
########################################### | ||
|
||
# first, fetch a 4s segment centered on GW150914 | ||
gps = 1126259462.4 | ||
duration = 4 | ||
post_trigger_duration = 2 | ||
start_pad = duration - post_trigger_duration | ||
end_pad = post_trigger_duration | ||
fmin = 20.0 | ||
fmax = 1024.0 | ||
|
||
ifos = [H1, L1] | ||
|
||
for ifo in ifos: | ||
ifo.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2) | ||
|
||
M_c_min, M_c_max = 10.0, 80.0 | ||
q_min, q_max = 0.125, 1.0 | ||
m_1_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_max)[0], Mc_q_to_m1_m2(M_c_max, q_min)[0], parameter_names=["m_1"]) | ||
m_2_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_min)[1], Mc_q_to_m1_m2(M_c_max, q_max)[1], parameter_names=["m_2"]) | ||
s1z_prior = UniformPrior(-1.0, 1.0, parameter_names=["s1_z"]) | ||
s2z_prior = UniformPrior(-1.0, 1.0, parameter_names=["s2_z"]) | ||
dL_prior = PowerLawPrior(1.0, 2000.0, 2.0, parameter_names=["d_L"]) | ||
t_c_prior = UniformPrior(-0.05, 0.05, parameter_names=["t_c"]) | ||
phase_c_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["phase_c"]) | ||
iota_prior = SinePrior(parameter_names=["iota"]) | ||
psi_prior = UniformPrior(0.0, jnp.pi, parameter_names=["psi"]) | ||
ra_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["ra"]) | ||
dec_prior = CosinePrior(parameter_names=["dec"]) | ||
|
||
prior = CombinePrior( | ||
[ | ||
m_1_prior, | ||
m_2_prior, | ||
s1z_prior, | ||
s2z_prior, | ||
dL_prior, | ||
t_c_prior, | ||
phase_c_prior, | ||
iota_prior, | ||
psi_prior, | ||
ra_prior, | ||
dec_prior, | ||
] | ||
) | ||
|
||
sample_transforms = [ | ||
ComponentMassesToChirpMassMassRatioTransform(name_mapping=[["m_1", "m_2"], ["M_c", "q"]]), | ||
BoundToUnbound(name_mapping = [["M_c"], ["M_c_unbounded"]], original_lower_bound=M_c_min, original_upper_bound=M_c_max), | ||
BoundToUnbound(name_mapping = [["q"], ["q_unbounded"]], original_lower_bound=q_min, original_upper_bound=q_max), | ||
BoundToUnbound(name_mapping = [["s1_z"], ["s1_z_unbounded"]] , original_lower_bound=-1.0, original_upper_bound=1.0), | ||
BoundToUnbound(name_mapping = [["s2_z"], ["s2_z_unbounded"]] , original_lower_bound=-1.0, original_upper_bound=1.0), | ||
BoundToUnbound(name_mapping = [["d_L"], ["d_L_unbounded"]] , original_lower_bound=0.0, original_upper_bound=2000.0), | ||
BoundToUnbound(name_mapping = [["t_c"], ["t_c_unbounded"]] , original_lower_bound=-0.05, original_upper_bound=0.05), | ||
BoundToUnbound(name_mapping = [["phase_c"], ["phase_c_unbounded"]] , original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), | ||
BoundToUnbound(name_mapping = [["iota"], ["iota_unbounded"]], original_lower_bound=0., original_upper_bound=jnp.pi), | ||
BoundToUnbound(name_mapping = [["psi"], ["psi_unbounded"]], original_lower_bound=0.0, original_upper_bound=jnp.pi), | ||
SkyFrameToDetectorFrameSkyPositionTransform(name_mapping = [["ra", "dec"], ["zenith", "azimuth"]], gps_time=gps, ifos=ifos), | ||
BoundToUnbound(name_mapping = [["zenith"], ["zenith_unbounded"]], original_lower_bound=0.0, original_upper_bound=jnp.pi), | ||
BoundToUnbound(name_mapping = [["azimuth"], ["azimuth_unbounded"]], original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), | ||
] | ||
|
||
likelihood_transforms = [ | ||
ComponentMassesToChirpMassSymmetricMassRatioTransform(name_mapping=[["m_1", "m_2"], ["M_c", "eta"]]), | ||
] | ||
|
||
likelihood = HeterodynedTransientLikelihoodFD( | ||
ifos, | ||
prior=prior, | ||
waveform=RippleIMRPhenomD(), | ||
trigger_time=gps, | ||
duration=4, | ||
post_trigger_duration=2, | ||
sample_transforms=sample_transforms, | ||
likelihood_transforms=likelihood_transforms, | ||
n_steps=5, | ||
popsize=10, | ||
) | ||
|
||
|
||
mass_matrix = jnp.eye(11) | ||
mass_matrix = mass_matrix.at[1, 1].set(1e-3) | ||
mass_matrix = mass_matrix.at[5, 5].set(1e-3) | ||
local_sampler_arg = {"step_size": mass_matrix * 3e-3} | ||
|
||
Adam_optimizer = optimization_Adam(n_steps=5, learning_rate=0.01, noise_level=1) | ||
|
||
n_epochs = 2 | ||
n_loop_training = 1 | ||
learning_rate = 1e-4 | ||
|
||
|
||
jim = Jim( | ||
likelihood, | ||
prior, | ||
sample_transforms=sample_transforms, | ||
likelihood_transforms=likelihood_transforms, | ||
n_loop_training=n_loop_training, | ||
n_loop_production=1, | ||
n_local_steps=5, | ||
n_global_steps=5, | ||
n_chains=4, | ||
n_epochs=n_epochs, | ||
learning_rate=learning_rate, | ||
n_max_examples=30, | ||
n_flow_samples=100, | ||
momentum=0.9, | ||
batch_size=100, | ||
use_global=True, | ||
train_thinning=1, | ||
output_thinning=1, | ||
local_sampler_arg=local_sampler_arg, | ||
strategies=[Adam_optimizer, "default"], | ||
) | ||
|
||
jim.sample(jax.random.PRNGKey(42)) |