-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added GW170817 relative binning example
- Loading branch information
ThibeauWouters
committed
Dec 6, 2023
1 parent
ed223ef
commit f006ca6
Showing
1 changed file
with
140 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
from jimgw.jim import Jim | ||
from jimgw.detector import H1, L1, V1 | ||
from jimgw.likelihood import HeterodynedTransientLikelihoodFD | ||
from jimgw.waveform import RippleIMRPhenomD | ||
from jimgw.prior import Uniform, Powerlaw, Composite | ||
import jax.numpy as jnp | ||
import jax | ||
import time | ||
jax.config.update("jax_enable_x64", True) | ||
|
||
|
||
### Fetching the data | ||
|
||
total_time_start = time.time() | ||
gps = 1187008882.43 | ||
trigger_time = gps | ||
fmin = 20 | ||
fmax = 2048 | ||
minimum_frequency = fmin | ||
maximum_frequency = fmax | ||
T = 128 | ||
duration = T | ||
post_trigger_duration = 2 | ||
epoch = duration - post_trigger_duration | ||
f_ref = fmin | ||
|
||
### Getting ifos and overwriting with above data | ||
|
||
tukey_alpha = 2 / (duration / 2) | ||
H1.load_data(gps, duration, 2, fmin, fmax, psd_pad=duration+16, tukey_alpha=tukey_alpha) | ||
L1.load_data(gps, duration, 2, fmin, fmax, psd_pad=duration+16, tukey_alpha=tukey_alpha) | ||
V1.load_data(gps, duration, 2, fmin, fmax, psd_pad=duration+16, tukey_alpha=tukey_alpha) | ||
|
||
### Define priors | ||
|
||
# Internal parameters | ||
Mc_prior = Uniform(1.18, 1.21, naming=["M_c"]) | ||
q_prior = Uniform( | ||
0.125, | ||
1.0, | ||
naming=["q"], | ||
transforms={"q": ("eta", lambda params: params["q"] / (1 + params["q"]) ** 2)}, | ||
) | ||
s1z_prior = Uniform(-0.05, 0.05, naming=["s1_z"]) | ||
s2z_prior = Uniform(-0.05, 0.05, naming=["s2_z"]) | ||
|
||
# External parameters | ||
dL_prior = Powerlaw(1.0, 75.0, 2.0, naming=["d_L"]) | ||
t_c_prior = Uniform(-0.1, 0.1, naming=["t_c"]) | ||
phase_c_prior = Uniform(0.0, 2 * jnp.pi, naming=["phase_c"]) | ||
cos_iota_prior = Uniform( | ||
-1.0, | ||
1.0, | ||
naming=["cos_iota"], | ||
transforms={ | ||
"cos_iota": ( | ||
"iota", | ||
lambda params: jnp.arccos( | ||
jnp.arcsin(jnp.sin(params["cos_iota"] / 2 * jnp.pi)) * 2 / jnp.pi | ||
), | ||
) | ||
}, | ||
) | ||
psi_prior = Uniform(0.0, jnp.pi, naming=["psi"]) | ||
ra_prior = Uniform(0.0, 2 * jnp.pi, naming=["ra"]) | ||
sin_dec_prior = Uniform( | ||
-1.0, | ||
1.0, | ||
naming=["sin_dec"], | ||
transforms={ | ||
"sin_dec": ( | ||
"dec", | ||
lambda params: jnp.arcsin( | ||
jnp.arcsin(jnp.sin(params["sin_dec"] / 2 * jnp.pi)) * 2 / jnp.pi | ||
), | ||
) | ||
}, | ||
) | ||
|
||
prior = Composite([ | ||
Mc_prior, | ||
q_prior, | ||
s1z_prior, | ||
s2z_prior, | ||
dL_prior, | ||
t_c_prior, | ||
phase_c_prior, | ||
cos_iota_prior, | ||
psi_prior, | ||
ra_prior, | ||
sin_dec_prior, | ||
] | ||
) | ||
|
||
# The following only works if every prior has xmin and xmax property, which is OK for Uniform and Powerlaw | ||
bounds = jnp.array([[p.xmin, p.xmax] for p in prior.priors]).T | ||
|
||
### Create likelihood object | ||
likelihood = HeterodynedTransientLikelihoodFD([H1, L1, V1], prior=prior, bounds=bounds, waveform=RippleIMRPhenomD(), trigger_time=gps, duration=T, n_bins=500) | ||
|
||
### Create sampler and jim objects | ||
eps = 3e-2 | ||
n_dim = 11 | ||
mass_matrix = jnp.eye(n_dim) | ||
mass_matrix = mass_matrix.at[0,0].set(1e-5) | ||
mass_matrix = mass_matrix.at[1,1].set(1e-4) | ||
mass_matrix = mass_matrix.at[2,2].set(1e-3) | ||
mass_matrix = mass_matrix.at[3,3].set(1e-3) | ||
mass_matrix = mass_matrix.at[5,5].set(1e-5) | ||
mass_matrix = mass_matrix.at[9,9].set(1e-2) | ||
mass_matrix = mass_matrix.at[10,10].set(1e-2) | ||
local_sampler_arg = {"step_size": mass_matrix * eps} | ||
|
||
outdir_name = "./outdir/" | ||
|
||
jim = Jim( | ||
likelihood, | ||
prior, | ||
n_loop_pretraining=0, | ||
n_loop_training=200, | ||
n_loop_production=20, | ||
n_local_steps=200, | ||
n_global_steps=200, | ||
n_chains=1000, | ||
n_epochs=300, | ||
learning_rate=0.001, | ||
max_samples=50000, | ||
momentum=0.9, | ||
batch_size=50000, | ||
use_global=True, | ||
keep_quantile=0.0, | ||
train_thinning=10, | ||
output_thinning=30, | ||
n_loops_maximize_likelihood = 2000, | ||
local_sampler_arg=local_sampler_arg, | ||
outdir_name=outdir_name | ||
) | ||
|
||
jim.sample(jax.random.PRNGKey(42)) | ||
jim.print_summary() |