Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update examples and fixing the Pv2 test #166

Merged
merged 4 commits into from
Oct 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
186 changes: 83 additions & 103 deletions example/GW150914_IMRPhenomD.py
Original file line number Diff line number Diff line change
@@ -1,22 +1,29 @@
import time

import jax
import jax.numpy as jnp

from jimgw.jim import Jim
from jimgw.jim import Jim
from jimgw.prior import (
CombinePrior,
UniformPrior,
CosinePrior,
SinePrior,
PowerLawPrior,
UniformSpherePrior,
)
from jimgw.single_event.detector import H1, L1
from jimgw.single_event.likelihood import TransientLikelihoodFD
from jimgw.single_event.waveform import RippleIMRPhenomD
from jimgw.transforms import BoundToUnbound
from jimgw.single_event.transforms import (
ComponentMassesToChirpMassSymmetricMassRatioTransform,
SkyFrameToDetectorFrameSkyPositionTransform,
ComponentMassesToChirpMassMassRatioTransform,
SphereSpinToCartesianSpinTransform,
MassRatioToSymmetricMassRatioTransform,
DistanceToSNRWeightedDistanceTransform,
GeocentricArrivalTimeToDetectorArrivalTimeTransform,
GeocentricArrivalPhaseToDetectorArrivalPhaseTransform,
)
from jimgw.single_event.utils import Mc_q_to_m1_m2
from flowMC.strategy.optimization import optimization_Adam
Expand All @@ -27,136 +34,110 @@
########## First we grab data #############
###########################################

total_time_start = time.time()

# first, fetch a 4s segment centered on GW150914
gps = 1126259462.4
duration = 4
post_trigger_duration = 2
start_pad = duration - post_trigger_duration
end_pad = post_trigger_duration
start = gps - 2
end = gps + 2
fmin = 20.0
fmax = 1024.0

ifos = [H1, L1]

for ifo in ifos:
ifo.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2)
H1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2)
L1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2)

waveform = RippleIMRPhenomD(f_ref=20)

###########################################
########## Set up priors ##################
###########################################

prior = []

# Mass prior
M_c_min, M_c_max = 10.0, 80.0
eta_min, eta_max = 0.2, 0.25
# m_1_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_max)[0], Mc_q_to_m1_m2(M_c_max, q_min)[0], parameter_names=["m_1"])
# m_2_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_min)[1], Mc_q_to_m1_m2(M_c_max, q_max)[1], parameter_names=["m_2"])
q_min, q_max = 0.125, 1.0
Mc_prior = UniformPrior(M_c_min, M_c_max, parameter_names=["M_c"])
eta_prior = UniformPrior(eta_min, eta_max, parameter_names=["eta"])
s1z_prior = UniformPrior(-1.0, 1.0, parameter_names=["s1_z"])
s2z_prior = UniformPrior(-1.0, 1.0, parameter_names=["s2_z"])
q_prior = UniformPrior(q_min, q_max, parameter_names=["q"])

prior = prior + [Mc_prior, q_prior]

# Spin prior
s1_prior = UniformPrior(-1.0, 1.0, parameter_names=["s1_z"])
s2_prior = UniformPrior(-1.0, 1.0, parameter_names=["s2_z"])
iota_prior = SinePrior(parameter_names=["iota"])

prior = prior + [
s1_prior,
s2_prior,
iota_prior,
]

# Extrinsic prior
dL_prior = PowerLawPrior(1.0, 2000.0, 2.0, parameter_names=["d_L"])
t_c_prior = UniformPrior(-0.05, 0.05, parameter_names=["t_c"])
phase_c_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["phase_c"])
iota_prior = SinePrior(parameter_names=["iota"])
psi_prior = UniformPrior(0.0, jnp.pi, parameter_names=["psi"])
ra_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["ra"])
dec_prior = CosinePrior(parameter_names=["dec"])

prior = CombinePrior(
[
Mc_prior,
eta_prior,
s1z_prior,
s2z_prior,
dL_prior,
t_c_prior,
phase_c_prior,
iota_prior,
psi_prior,
ra_prior,
dec_prior,
]
)
prior = prior + [
dL_prior,
t_c_prior,
phase_c_prior,
psi_prior,
ra_prior,
dec_prior,
]

prior = CombinePrior(prior)

# Defining Transforms

sample_transforms = [
# ComponentMassesToChirpMassMassRatioTransform,
BoundToUnbound(
name_mapping=(["M_c"], ["M_c_unbounded"]),
original_lower_bound=M_c_min,
original_upper_bound=M_c_max,
),
BoundToUnbound(
name_mapping=(["eta"], ["eta_unbounded"]),
original_lower_bound=eta_min,
original_upper_bound=eta_max,
),
BoundToUnbound(
name_mapping=(["s1_z"], ["s1_z_unbounded"]),
original_lower_bound=-1.0,
original_upper_bound=1.0,
),
BoundToUnbound(
name_mapping=(["s2_z"], ["s2_z_unbounded"]),
original_lower_bound=-1.0,
original_upper_bound=1.0,
),
BoundToUnbound(
name_mapping=(["d_L"], ["d_L_unbounded"]),
original_lower_bound=1.0,
original_upper_bound=2000.0,
),
BoundToUnbound(
name_mapping=(["t_c"], ["t_c_unbounded"]),
original_lower_bound=-0.05,
original_upper_bound=0.05,
),
BoundToUnbound(
name_mapping=(["phase_c"], ["phase_c_unbounded"]),
original_lower_bound=0.0,
original_upper_bound=2 * jnp.pi,
),
BoundToUnbound(
name_mapping=(["iota"], ["iota_unbounded"]),
original_lower_bound=0.0,
original_upper_bound=jnp.pi,
),
BoundToUnbound(
name_mapping=(["psi"], ["psi_unbounded"]),
original_lower_bound=0.0,
original_upper_bound=jnp.pi,
),
DistanceToSNRWeightedDistanceTransform(gps_time=gps, ifos=ifos, dL_min=dL_prior.xmin, dL_max=dL_prior.xmax),
GeocentricArrivalPhaseToDetectorArrivalPhaseTransform(gps_time=gps, ifo=ifos[0]),
GeocentricArrivalTimeToDetectorArrivalTimeTransform(tc_min=t_c_prior.xmin, tc_max=t_c_prior.xmax, gps_time=gps, ifo=ifos[0]),
SkyFrameToDetectorFrameSkyPositionTransform(gps_time=gps, ifos=ifos),
BoundToUnbound(
name_mapping=(["zenith"], ["zenith_unbounded"]),
original_lower_bound=0.0,
original_upper_bound=jnp.pi,
),
BoundToUnbound(
name_mapping=(["azimuth"], ["azimuth_unbounded"]),
original_lower_bound=0.0,
original_upper_bound=2 * jnp.pi,
),
BoundToUnbound(name_mapping = (["M_c"], ["M_c_unbounded"]), original_lower_bound=M_c_min, original_upper_bound=M_c_max),
BoundToUnbound(name_mapping = (["q"], ["q_unbounded"]), original_lower_bound=q_min, original_upper_bound=q_max),
BoundToUnbound(name_mapping = (["s1_z"], ["s1_z_unbounded"]) , original_lower_bound=-1.0, original_upper_bound=1.0),
BoundToUnbound(name_mapping = (["s2_z"], ["s2_z_unbounded"]) , original_lower_bound=-1.0, original_upper_bound=1.0),
BoundToUnbound(name_mapping = (["iota"], ["iota_unbounded"]) , original_lower_bound=0.0, original_upper_bound=jnp.pi),
BoundToUnbound(name_mapping = (["phase_det"], ["phase_det_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi),
BoundToUnbound(name_mapping = (["psi"], ["psi_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi),
BoundToUnbound(name_mapping = (["zenith"], ["zenith_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi),
BoundToUnbound(name_mapping = (["azimuth"], ["azimuth_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi),
]

likelihood_transforms = [
# ComponentMassesToChirpMassSymmetricMassRatioTransform,
MassRatioToSymmetricMassRatioTransform,
]


likelihood = TransientLikelihoodFD(
ifos,
waveform=RippleIMRPhenomD(),
trigger_time=gps,
duration=4,
post_trigger_duration=2,
[H1, L1], waveform=waveform, trigger_time=gps, duration=4, post_trigger_duration=2
)


mass_matrix = jnp.eye(11)
mass_matrix = mass_matrix.at[1, 1].set(1e-3)
mass_matrix = mass_matrix.at[5, 5].set(1e-3)
local_sampler_arg = {"step_size": mass_matrix * 3e-3}
mass_matrix = jnp.eye(prior.n_dim)
# mass_matrix = mass_matrix.at[1, 1].set(1e-3)
# mass_matrix = mass_matrix.at[9, 9].set(1e-3)
local_sampler_arg = {"step_size": mass_matrix * 1e-3}

Adam_optimizer = optimization_Adam(n_steps=3000, learning_rate=0.01, noise_level=1)

n_epochs = 30
n_loop_training = 20
learning_rate = 1e-4
import optax

n_epochs = 20
n_loop_training = 100
total_epochs = n_epochs * n_loop_training
start = total_epochs // 10
learning_rate = optax.polynomial_schedule(
1e-3, 1e-4, 4.0, total_epochs - start, transition_begin=start
)

jim = Jim(
likelihood,
Expand All @@ -175,13 +156,12 @@
momentum=0.9,
batch_size=30000,
use_global=True,
keep_quantile=0.0,
train_thinning=1,
output_thinning=10,
local_sampler_arg=local_sampler_arg,
strategies=[Adam_optimizer, "default"],
verbose=True,
# strategies=[Adam_optimizer,"default"],
)


jim.sample(jax.random.PRNGKey(42))
# jim.get_samples()
# jim.print_summary()
Loading
Loading