-
Notifications
You must be signed in to change notification settings - Fork 118
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Increase-test-coverage in
backend_utils
(#940)
* Increase-test-coverage in `backend_utils` * Increase-test-coverage in `backend_utils` * Increase-test-coverage in `backend_utils` * ncrease-test-coverage in `backend_utils` * ncrease-test-coverage in `backend_utils` * ncrease-test-coverage in `backend_utils` * Increase-test-coverage in `backend_utils`
- Loading branch information
1 parent
6383d8a
commit 9bf92c8
Showing
1 changed file
with
235 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,235 @@ | ||
from keras_core.backend.common.backend_utils import ( | ||
_convert_conv_tranpose_padding_args_from_keras_to_jax, | ||
) | ||
from keras_core.backend.common.backend_utils import ( | ||
_convert_conv_tranpose_padding_args_from_keras_to_torch, | ||
) | ||
from keras_core.backend.common.backend_utils import ( | ||
_get_output_shape_given_tf_padding, | ||
) | ||
from keras_core.backend.common.backend_utils import ( | ||
compute_conv_transpose_padding_args_for_jax, | ||
) | ||
from keras_core.backend.common.backend_utils import ( | ||
compute_conv_transpose_padding_args_for_torch, | ||
) | ||
from keras_core.testing import test_case | ||
|
||
|
||
class ConvertConvTransposePaddingArgsJAXTest(test_case.TestCase): | ||
def test_valid_padding_without_output_padding(self): | ||
"""Test conversion with 'valid' padding and no output padding""" | ||
( | ||
left_pad, | ||
right_pad, | ||
) = _convert_conv_tranpose_padding_args_from_keras_to_jax( | ||
kernel_size=3, | ||
stride=2, | ||
dilation_rate=1, | ||
padding="valid", | ||
output_padding=None, | ||
) | ||
self.assertEqual(left_pad, 2) | ||
self.assertEqual(right_pad, 2) | ||
|
||
def test_same_padding_without_output_padding(self): | ||
"""Test conversion with 'same' padding and no output padding.""" | ||
( | ||
left_pad, | ||
right_pad, | ||
) = _convert_conv_tranpose_padding_args_from_keras_to_jax( | ||
kernel_size=3, | ||
stride=2, | ||
dilation_rate=1, | ||
padding="same", | ||
output_padding=None, | ||
) | ||
self.assertEqual(left_pad, 2) | ||
self.assertEqual(right_pad, 1) | ||
|
||
|
||
class ConvertConvTransposePaddingArgsTorchTest(test_case.TestCase): | ||
def test_valid_padding_without_output_padding(self): | ||
"""Test conversion with 'valid' padding and no output padding""" | ||
( | ||
torch_padding, | ||
torch_output_padding, | ||
) = _convert_conv_tranpose_padding_args_from_keras_to_torch( | ||
kernel_size=3, | ||
stride=2, | ||
dilation_rate=1, | ||
padding="valid", | ||
output_padding=None, | ||
) | ||
self.assertEqual(torch_padding, 0) | ||
self.assertEqual(torch_output_padding, 0) | ||
|
||
def test_same_padding_without_output_padding(self): | ||
"""Test conversion with 'same' padding and no output padding""" | ||
( | ||
torch_padding, | ||
torch_output_padding, | ||
) = _convert_conv_tranpose_padding_args_from_keras_to_torch( | ||
kernel_size=3, | ||
stride=2, | ||
dilation_rate=1, | ||
padding="same", | ||
output_padding=None, | ||
) | ||
self.assertEqual(torch_padding, 1) | ||
self.assertEqual(torch_output_padding, 1) | ||
|
||
|
||
class ComputeConvTransposePaddingArgsForJAXTest(test_case.TestCase): | ||
def test_valid_padding_without_output_padding(self): | ||
"""Test computation with 'valid' padding and no output padding""" | ||
jax_padding = compute_conv_transpose_padding_args_for_jax( | ||
input_shape=(1, 5, 5, 3), | ||
kernel_shape=(3, 3, 3, 3), | ||
strides=2, | ||
padding="valid", | ||
output_padding=None, | ||
dilation_rate=1, | ||
) | ||
self.assertEqual(jax_padding, [(2, 2), (2, 2)]) | ||
|
||
def test_same_padding_without_output_padding(self): | ||
"""Test computation with 'same' padding and no output padding""" | ||
jax_padding = compute_conv_transpose_padding_args_for_jax( | ||
input_shape=(1, 5, 5, 3), | ||
kernel_shape=(3, 3, 3, 3), | ||
strides=2, | ||
padding="same", | ||
output_padding=None, | ||
dilation_rate=1, | ||
) | ||
|
||
self.assertEqual(jax_padding, [(2, 1), (2, 1)]) | ||
|
||
|
||
class ComputeConvTransposePaddingArgsForTorchTest(test_case.TestCase): | ||
def test_valid_padding_without_output_padding(self): | ||
"""Test computation with 'valid' padding and no output padding""" | ||
( | ||
torch_paddings, | ||
torch_output_paddings, | ||
) = compute_conv_transpose_padding_args_for_torch( | ||
input_shape=(1, 5, 5, 3), | ||
kernel_shape=(3, 3, 3, 3), | ||
strides=2, | ||
padding="valid", | ||
output_padding=None, | ||
dilation_rate=1, | ||
) | ||
self.assertEqual(torch_paddings, [0, 0]) | ||
self.assertEqual(torch_output_paddings, [0, 0]) | ||
|
||
def test_same_padding_without_output_padding(self): | ||
"""Test computation with 'same' padding and no output padding""" | ||
( | ||
torch_paddings, | ||
torch_output_paddings, | ||
) = compute_conv_transpose_padding_args_for_torch( | ||
input_shape=(1, 5, 5, 3), | ||
kernel_shape=(3, 3, 3, 3), | ||
strides=2, | ||
padding="same", | ||
output_padding=None, | ||
dilation_rate=1, | ||
) | ||
self.assertEqual(torch_paddings, [1, 1]) | ||
self.assertEqual(torch_output_paddings, [1, 1]) | ||
|
||
def test_valid_padding_with_none_output_padding(self): | ||
"""Test conversion with 'valid' padding and no output padding""" | ||
( | ||
torch_padding, | ||
torch_output_padding, | ||
) = _convert_conv_tranpose_padding_args_from_keras_to_torch( | ||
kernel_size=3, | ||
stride=2, | ||
dilation_rate=1, | ||
padding="valid", | ||
output_padding=None, | ||
) | ||
self.assertEqual(torch_padding, 0) | ||
self.assertEqual(torch_output_padding, 0) | ||
|
||
def test_valid_padding_with_output_padding(self): | ||
"""Test conversion with 'valid' padding and output padding for Torch.""" | ||
( | ||
torch_padding, | ||
torch_output_padding, | ||
) = _convert_conv_tranpose_padding_args_from_keras_to_torch( | ||
kernel_size=3, | ||
stride=2, | ||
dilation_rate=1, | ||
padding="valid", | ||
output_padding=1, | ||
) | ||
self.assertEqual(torch_padding, 0) | ||
self.assertEqual(torch_output_padding, 1) | ||
|
||
|
||
class GetOutputShapeGivenTFPaddingTest(test_case.TestCase): | ||
def test_valid_padding_without_output_padding(self): | ||
"""Test computation with 'valid' padding and no output padding.""" | ||
output_shape = _get_output_shape_given_tf_padding( | ||
input_size=5, | ||
kernel_size=3, | ||
strides=2, | ||
padding="valid", | ||
output_padding=None, | ||
dilation_rate=1, | ||
) | ||
self.assertEqual(output_shape, 11) | ||
|
||
def test_same_padding_without_output_padding(self): | ||
"""Test computation with 'same' padding and no output padding.""" | ||
output_shape = _get_output_shape_given_tf_padding( | ||
input_size=5, | ||
kernel_size=3, | ||
strides=2, | ||
padding="same", | ||
output_padding=None, | ||
dilation_rate=1, | ||
) | ||
self.assertEqual(output_shape, 10) | ||
|
||
def test_valid_padding_with_output_padding(self): | ||
"""Test computation with 'valid' padding and output padding.""" | ||
output_shape = _get_output_shape_given_tf_padding( | ||
input_size=5, | ||
kernel_size=3, | ||
strides=2, | ||
padding="valid", | ||
output_padding=1, | ||
dilation_rate=1, | ||
) | ||
self.assertEqual(output_shape, 12) | ||
|
||
def test_warning_for_inconsistencies(self): | ||
"""Test that a warning is raised for potential inconsistencies""" | ||
with self.assertWarns(Warning): | ||
_convert_conv_tranpose_padding_args_from_keras_to_torch( | ||
kernel_size=3, | ||
stride=2, | ||
dilation_rate=1, | ||
padding="same", | ||
output_padding=1, | ||
) | ||
|
||
def test_same_padding_without_output_padding_for_torch_(self): | ||
"""Test conversion with 'same' padding and no output padding.""" | ||
( | ||
torch_padding, | ||
torch_output_padding, | ||
) = _convert_conv_tranpose_padding_args_from_keras_to_torch( | ||
kernel_size=3, | ||
stride=2, | ||
dilation_rate=1, | ||
padding="same", | ||
output_padding=None, | ||
) | ||
self.assertEqual(torch_padding, max(-((3 % 2 - 3) // 2), 0)) | ||
self.assertEqual(torch_output_padding, 1) |