Python Medical Anomaly Detection (PyMAD) using k-NNN and visibility detection
This is an implementation of the k-NNN algorithm Anomaly detection in Medical Imaging as introduced in https://arxiv.org/abs/2305.17695 by Tal and Nizan.
The visibility detection code can be found in https://github.com/CV-Reimplementation/Document-Enhancement-using-Visibility-Detection?tab=readme-ov-file
k-NNN pipeline (source)
Store train and test images using the following structure:
dataset_mame/
├── train/
│ ├── img1
│ ├── img2
│ ├── ...
├── test/
│ ├── good/
│ ├── img1
│ ├── img2
│ ├── ...
│ ├── ungood/
│ ├── img1
│ ├── img2
│ ├── ...
Main.py contains example code showing how to configure, train, and test the K-NNN model.
To be updated soon