forked from sxs-collaboration/spectre
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request sxs-collaboration#5865 from nikwit/kerr-schild-der…
…ivatives Add derivatives of Kerr Schild quantities
- Loading branch information
Showing
6 changed files
with
641 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
191 changes: 191 additions & 0 deletions
191
src/Evolution/Systems/CurvedScalarWave/Worldtube/KerrSchildDerivatives.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,191 @@ | ||
|
||
// Distributed under the MIT License. | ||
// See LICENSE.txt for details. | ||
|
||
#include "Evolution/Systems/CurvedScalarWave/Worldtube/KerrSchildDerivatives.hpp" | ||
|
||
#include <cstddef> | ||
|
||
#include "DataStructures/Tensor/EagerMath/DotProduct.hpp" | ||
#include "DataStructures/Tensor/EagerMath/Magnitude.hpp" | ||
#include "DataStructures/Tensor/EagerMath/Trace.hpp" | ||
#include "DataStructures/Tensor/Tensor.hpp" | ||
#include "Utilities/Gsl.hpp" | ||
|
||
namespace CurvedScalarWave::Worldtube { | ||
tnsr::iAA<double, 3> spatial_derivative_inverse_ks_metric( | ||
const tnsr::I<double, 3>& pos) { | ||
const double r_sq = get(dot_product(pos, pos)); | ||
const double r = sqrt(r_sq); | ||
const double one_over_r = 1. / r; | ||
const double one_over_r_2 = 1. / r_sq; | ||
const double one_over_r_3 = one_over_r_2 * one_over_r; | ||
|
||
tnsr::iAA<double, 3> di_imetric{}; | ||
tnsr::ii<double, 3> delta_ll{0.}; | ||
tnsr::Ij<double, 3> delta_ul{0.}; | ||
tnsr::i<double, 3> pos_lower{}; | ||
|
||
for (size_t i = 0; i < 3; ++i) { | ||
delta_ll.get(i, i) = 1.; | ||
delta_ul.get(i, i) = 1.; | ||
pos_lower.get(i) = pos.get(i); | ||
} | ||
|
||
const auto d_imetric_ij = tenex::evaluate<ti::i, ti::J, ti::K>( | ||
one_over_r_3 * | ||
(6. * pos(ti::J) * pos(ti::K) * pos_lower(ti::i) * one_over_r_2 - | ||
2. * delta_ul(ti::J, ti::i) * pos(ti::K) - | ||
2. * delta_ul(ti::K, ti::i) * pos(ti::J))); | ||
const auto d_imetric_i0 = tenex::evaluate<ti::i, ti::J>( | ||
one_over_r_2 * (-4. * pos_lower(ti::i) * pos(ti::J) * one_over_r_2 + | ||
2. * delta_ul(ti::J, ti::i))); | ||
const auto d_imetric_00 = | ||
tenex::evaluate<ti::i>(2. * pos_lower(ti::i) * one_over_r_3); | ||
for (size_t i = 0; i < 3; ++i) { | ||
di_imetric.get(i, 0, 0) = d_imetric_00.get(i); | ||
for (size_t j = 0; j < 3; ++j) { | ||
di_imetric.get(i, j + 1, 0) = d_imetric_i0.get(i, j); | ||
for (size_t k = 0; k < 3; ++k) { | ||
di_imetric.get(i, j + 1, k + 1) = d_imetric_ij.get(i, j, k); | ||
} | ||
} | ||
} | ||
return di_imetric; | ||
} | ||
|
||
tnsr::iaa<double, 3> spatial_derivative_ks_metric( | ||
const tnsr::aa<double, 3>& metric, | ||
const tnsr::iAA<double, 3>& di_inverse_metric) { | ||
tnsr::iaa<double, 3> di_metric{}; | ||
tenex::evaluate<ti::i, ti::a, ti::b>( | ||
make_not_null(&di_metric), -metric(ti::a, ti::c) * metric(ti::b, ti::d) * | ||
di_inverse_metric(ti::i, ti::C, ti::D)); | ||
return di_metric; | ||
} | ||
|
||
tnsr::iiAA<double, 3> second_spatial_derivative_inverse_ks_metric( | ||
const tnsr::I<double, 3>& pos) { | ||
const double r_sq = get(dot_product(pos, pos)); | ||
const double r = sqrt(r_sq); | ||
const double one_over_r = 1. / r; | ||
const double one_over_r_2 = 1. / r_sq; | ||
const double one_over_r_3 = one_over_r_2 * one_over_r; | ||
const double one_over_r_4 = one_over_r_2 * one_over_r_2; | ||
|
||
tnsr::iiAA<double, 3> dij_imetric{}; | ||
tnsr::ii<double, 3> delta_ll{0.}; | ||
tnsr::Ij<double, 3> delta_ul{0.}; | ||
tnsr::i<double, 3> pos_lower{}; | ||
|
||
for (size_t i = 0; i < 3; ++i) { | ||
delta_ll.get(i, i) = 1.; | ||
delta_ul.get(i, i) = 1.; | ||
pos_lower.get(i) = pos.get(i); | ||
} | ||
|
||
const auto d2_imetric_ij = tenex::evaluate<ti::i, ti::j, ti::K, ti::L>( | ||
one_over_r_3 * | ||
(-2. * (delta_ul(ti::L, ti::i) * delta_ul(ti::K, ti::j) + | ||
delta_ul(ti::K, ti::i) * delta_ul(ti::L, ti::j)) + | ||
one_over_r_2 * | ||
(6. * (delta_ll(ti::i, ti::j) * pos(ti::K) * pos(ti::L) + | ||
delta_ul(ti::K, ti::i) * pos_lower(ti::j) * pos(ti::L) + | ||
delta_ul(ti::K, ti::j) * pos_lower(ti::i) * pos(ti::L) + | ||
delta_ul(ti::L, ti::i) * pos_lower(ti::j) * pos(ti::K) + | ||
delta_ul(ti::L, ti::j) * pos_lower(ti::i) * pos(ti::K)) - | ||
one_over_r_2 * 30. * pos_lower(ti::i) * pos_lower(ti::j) * | ||
pos(ti::K) * pos(ti::L)))); | ||
|
||
const auto d2_imetric_i0 = tenex::evaluate<ti::j, ti::k, ti::I>( | ||
one_over_r_4 * | ||
(-4. * (delta_ll(ti::k, ti::j) * pos(ti::I) + | ||
delta_ul(ti::I, ti::k) * pos_lower(ti::j) + | ||
delta_ul(ti::I, ti::j) * pos_lower(ti::k)) + | ||
one_over_r_2 * 16. * pos(ti::I) * pos_lower(ti::j) * pos_lower(ti::k))); | ||
const auto d2_imetric_00 = tenex::evaluate<ti::i, ti::j>( | ||
one_over_r_3 * (2. * delta_ll(ti::i, ti::j) - | ||
one_over_r_2 * 6. * pos_lower(ti::i) * pos_lower(ti::j))); | ||
for (size_t i = 0; i < 3; ++i) { | ||
for (size_t j = 0; j < 3; ++j) { | ||
dij_imetric.get(i, j, 0, 0) = d2_imetric_00.get(i, j); | ||
for (size_t k = 0; k < 3; ++k) { | ||
dij_imetric.get(i, j, k + 1, 0) = d2_imetric_i0.get(i, j, k); | ||
for (size_t l = 0; l < 3; ++l) { | ||
dij_imetric.get(i, j, k + 1, l + 1) = d2_imetric_ij.get(i, j, k, l); | ||
} | ||
} | ||
} | ||
} | ||
return dij_imetric; | ||
} | ||
|
||
tnsr::iiaa<double, 3> second_spatial_derivative_metric( | ||
const tnsr::aa<double, 3>& metric, const tnsr::iaa<double, 3>& di_metric, | ||
const tnsr::iAA<double, 3>& di_inverse_metric, | ||
const tnsr::iiAA<double, 3>& dij_inverse_metric) { | ||
tnsr::iiaa<double, 3> dij_metric{}; | ||
tenex::evaluate<ti::j, ti::i, ti::a, ti::b>( | ||
make_not_null(&dij_metric), | ||
-metric(ti::a, ti::c) * metric(ti::b, ti::d) * | ||
dij_inverse_metric(ti::j, ti::i, ti::C, ti::D) - | ||
2. * metric(ti::a, ti::c) * di_metric(ti::j, ti::b, ti::d) * | ||
di_inverse_metric(ti::i, ti::C, ti::D)); | ||
return dij_metric; | ||
} | ||
|
||
tnsr::iAbb<double, 3> spatial_derivative_christoffel( | ||
const tnsr::iaa<double, 3>& di_metric, | ||
const tnsr::iiaa<double, 3>& dij_metric, | ||
const tnsr::AA<double, 3>& inverse_metric, | ||
const tnsr::iAA<double, 3>& di_inverse_metric) { | ||
tnsr::iAbb<double, 3> di_christoffel{}; | ||
tnsr::abb<double, 3> d_metric{}; | ||
tnsr::iabb<double, 3> di_d_metric{}; | ||
for (size_t a = 0; a <= 3; ++a) { | ||
for (size_t b = 0; b <= 3; ++b) { | ||
d_metric.get(0, a, b) = 0.; | ||
for (size_t i = 0; i < 3; ++i) { | ||
d_metric.get(i + 1, a, b) = di_metric.get(i, a, b); | ||
di_d_metric.get(i, 0, a, b) = 0.; | ||
for (size_t j = 0; j < 3; ++j) { | ||
di_d_metric.get(i, j + 1, a, b) = dij_metric.get(i, j, a, b); | ||
} | ||
} | ||
} | ||
} | ||
tenex::evaluate<ti::i, ti::A, ti::b, ti::c>( | ||
make_not_null(&di_christoffel), | ||
0.5 * di_inverse_metric(ti::i, ti::A, ti::D) * | ||
(d_metric(ti::b, ti::c, ti::d) + d_metric(ti::c, ti::b, ti::d) - | ||
d_metric(ti::d, ti::b, ti::c)) + | ||
0.5 * inverse_metric(ti::A, ti::D) * | ||
(di_d_metric(ti::i, ti::b, ti::c, ti::d) + | ||
di_d_metric(ti::i, ti::c, ti::b, ti::d) - | ||
di_d_metric(ti::i, ti::d, ti::b, ti::c))); | ||
return di_christoffel; | ||
} | ||
|
||
tnsr::iA<double, 3> spatial_derivative_ks_contracted_christoffel( | ||
const tnsr::I<double, 3>& pos) { | ||
const double r_sq = get(dot_product(pos, pos)); | ||
const double r = sqrt(r_sq); | ||
const double one_over_r = 1. / r; | ||
const double one_over_r_2 = 1. / r_sq; | ||
const double one_over_r_3 = cube(one_over_r); | ||
const double one_over_r_4 = square(one_over_r_2); | ||
const double one_over_r_5 = one_over_r_4 * one_over_r; | ||
|
||
tnsr::iA<double, 3> di_contracted_christoffel{}; | ||
for (size_t i = 0; i < 3; ++i) { | ||
di_contracted_christoffel.get(i, 0) = 4. * pos.get(i) * one_over_r_4; | ||
for (size_t j = 0; j < 3; ++j) { | ||
di_contracted_christoffel.get(i, j + 1) = | ||
-6. * pos.get(i) * pos.get(j) * one_over_r_5; | ||
} | ||
di_contracted_christoffel.get(i, i + 1) += 2. * one_over_r_3; | ||
} | ||
return di_contracted_christoffel; | ||
} | ||
|
||
} // namespace CurvedScalarWave::Worldtube |
64 changes: 64 additions & 0 deletions
64
src/Evolution/Systems/CurvedScalarWave/Worldtube/KerrSchildDerivatives.hpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
// Distributed under the MIT License. | ||
// See LICENSE.txt for details. | ||
|
||
#pragma once | ||
|
||
#include <cstddef> | ||
|
||
#include "DataStructures/Tensor/Tensor.hpp" | ||
#include "Utilities/Gsl.hpp" | ||
|
||
namespace CurvedScalarWave::Worldtube { | ||
/*! | ||
* \brief The spatial derivative of the zero spin inverse Kerr Schild metric, | ||
* $\partial_i g^{\mu \nu}$, assuming a black hole at the coordinate center with | ||
* mass M = 1. | ||
*/ | ||
tnsr::iAA<double, 3> spatial_derivative_inverse_ks_metric( | ||
const tnsr::I<double, 3>& pos); | ||
|
||
/*! | ||
* \brief The spatial derivative of the spacetime metric, | ||
* $\partial_i g_{\mu \nu}$. | ||
*/ | ||
tnsr::iaa<double, 3> spatial_derivative_ks_metric( | ||
const tnsr::aa<double, 3>& metric, | ||
const tnsr::iAA<double, 3>& di_inverse_metric); | ||
|
||
/*! | ||
* \brief The second spatial derivative of the zero spin inverse Kerr Schild | ||
* metric, $\partial_i \partial_j g^{\mu \nu}$, assuming a black hole at the | ||
* coordinate center with mass M = 1. | ||
*/ | ||
tnsr::iiAA<double, 3> second_spatial_derivative_inverse_ks_metric( | ||
const tnsr::I<double, 3>& pos); | ||
|
||
/*! | ||
* \brief The spatial derivative of the spacetime metric, | ||
* $\partial_i \partial_j g_{\mu \nu}$. | ||
*/ | ||
tnsr::iiaa<double, 3> second_spatial_derivative_metric( | ||
const tnsr::aa<double, 3>& metric, const tnsr::iaa<double, 3>& di_metric, | ||
const tnsr::iAA<double, 3>& di_inverse_metric, | ||
const tnsr::iiAA<double, 3>& dij_inverse_metric); | ||
|
||
/*! | ||
* \brief The spatial derivative of the Christoffel | ||
* symbols, $\partial_i \Gamma^\rho_{\mu \nu}$. | ||
*/ | ||
tnsr::iAbb<double, 3> spatial_derivative_christoffel( | ||
const tnsr::iaa<double, 3>& di_metric, | ||
const tnsr::iiaa<double, 3>& dij_metric, | ||
const tnsr::AA<double, 3>& inverse_metric, | ||
const tnsr::iAA<double, 3>& di_inverse_metric); | ||
|
||
/*! | ||
* \brief The spatial derivative of the zero spin Kerr Schild contracted | ||
* Christoffel symbols, | ||
* $\partial_i g^{\mu \nu} \Gamma^\rho_{\mu \nu}$, assuming a black hole at the | ||
* coordinate center with mass M = 1. | ||
*/ | ||
tnsr::iA<double, 3> spatial_derivative_ks_contracted_christoffel( | ||
const tnsr::I<double, 3>& pos); | ||
|
||
} // namespace CurvedScalarWave::Worldtube |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.