Skip to content

ICCV2019 - A painting AI that can reproduce paintings stroke by stroke using deep reinforcement learning.

License

Notifications You must be signed in to change notification settings

kilik128/ICCV2019-LearningToPaint

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

97 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ICCV2019-Learning to Paint

Abstract

We show how to teach machines to paint like human painters, who can use a small number of strokes to create fantastic paintings. By employing a neural renderer in model-based Deep Reinforcement Learning (DRL), our agents learn to determine the position and color of each stroke and make long-term plans to decompose texture-rich images into strokes. Experiments demonstrate that excellent visual effects can be achieved using hundreds of strokes. The training process does not require the experience of human painters or stroke tracking data.

You can easily use colaboratory to have a try.

DemoDemoDemo DemoDemoDemo

Dependencies

pip3 install torch==1.1.0
pip3 install tensorboardX
pip3 install opencv-python

Testing

Make sure there are renderer.pkl and actor.pkl before testing.

You can download a trained neural renderer and a CelebA actor for test: renderer.pkl and actor.pkl

$ wget "https://drive.google.com/uc?export=download&id=1-7dVdjCIZIxh8hHJnGTK-RA1-jL1tor4" -O renderer.pkl
$ wget "https://drive.google.com/uc?export=download&id=1a3vpKgjCVXHON4P7wodqhCgCMPgg1KeR" -O actor.pkl
$ python3 baseline/test.py --max_step=100 --actor=actor.pkl --renderer=renderer.pkl --img=image/test.png --divide=4
$ ffmpeg -r 10 -f image2 -i output/generated%d.png -s 512x512 -c:v libx264 -pix_fmt yuv420p video.mp4 -q:v 0 -q:a 0
(make a painting process video)

We also provide with some other neural renderers and agents, you can use them instead of renderer.pkl to train the agent:

triangle.pkl --- actor_triangle.pkl;

round.pkl --- actor_round.pkl;

bezierwotrans.pkl --- actor_notrans.pkl

We also provide 百度网盘 source. 链接: https://pan.baidu.com/s/1GELBQCeYojPOBZIwGOKNmA 提取码: aq8n

Training

Datasets

Download the CelebA dataset and put the aligned images in data/img_align_celeba/******.jpg

Neural Renderer

To create a differentiable painting environment, we need train the neural renderer firstly.

$ python3 baseline/train_renderer.py
$ tensorboard --logdir train_log --port=6006
(The training process will be shown at http://127.0.0.1:6006)

Paint Agent

After the neural renderer looks good enough, we can begin training the agent.

$ cd baseline
$ python3 train.py --max_step=40 --debug --batch_size=96
(A step contains 5 strokes in default.)
$ tensorboard --logdir train_log --port=6006

Resources

量子位报道

Learning to Paint:一个绘画 AI

旷视研究院推出基于深度强化学习的绘画智能体

Contributors

Also many thanks to ctmakro for inspiring this work. He also explored using greedy algorithm to generate paintings - opencv_playground.

If you find this repository useful for your research, please cite the following paper:

@inproceedings{huang2019learning,
  title={Learning to paint with model-based deep reinforcement learning},
  author={Huang, Zhewei and Heng, Wen and Zhou, Shuchang},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
  year={2019}
}

感谢支持 Paypal Sponsor: https://www.paypal.com/paypalme/hzwer

imageimage

About

ICCV2019 - A painting AI that can reproduce paintings stroke by stroke using deep reinforcement learning.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 89.2%
  • Jupyter Notebook 10.8%