Skip to content

klausreus/Data-Driven-Attribution-of-Climate-Events

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data-Driven-Attribution-of-Climate-Events



1st Step: Reproduce the Paper from Badr et al (2014) 'Application of Statistical Models of the Prediction of Seasonal Rainfall Anomalies over the Sahel'

Note: The underlying data used here is not always the same as in Badr et al. (2014).
In general I used the most recent versions of the single data sets.

  • nb_badr01_sahelrainfall.ipynb plots a time series from the Sahel Precipitation Index (SPI).

  • nb_badr02_boxcorr.ipynb box-correlates the SPI with global Surface Temperature.

  • nb_badr03_indices.ipynb reproduces Badr's predicor indices

  • nb_badr04_pca.ipynb applies PC decomposition to the whole set of predictor variables

  • nb_badr05_pred_nn.ipynb sets up and run a simple Neural Network for summer rainfall prediction

  • nb_badr05_pred_nn_gridsearch_tf using tensorflow to perform Grid Search for optimizing Badr's model

  • nb_ersst_data.ipynb merges the single ERSST Data files into one netCDF file.

  • For the model prediction Badr et al. (2014) used a total set of 20 predictor variables.
    In nb_predictor_indices.ipynb the according 20 AMJ predictors are computed.

2nd Step: Modify model - Aiming for better performance

  • nb_klausmodel_gridsearch apply more recent methods in model architechture

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published