- automatic evaluation of protocol compliance
- Documentation: https://open-minds-lab.github.io/mrQA/
- Tutorial: https://nbviewer.org/github/Open-Minds-Lab/mrQA/blob/master/examples/usage.ipynb
Simple schematic of the library:
mrQA
uses MRDataset
to efficiently parse various neuroimaging dataset formats, which is available here.
A protocol compliance report can be generated directly from the command line interface.
For a DICOM dataset:
mr_proto_compl --data_root /path/to/dataset --style dicom
For a BIDS dataset:
mr_proto_compl --data_root /path/to/dataset --style bids
To use mrQA in a project:
import mrQA
The most important methods for checking protocol compliance is
check_compliance
. It calls all the required functions.
- To infer the most frequent values for each acquisition parameter
- Aggregate the non-compliance information to generate an HTML report
First of all, you have to import the relevant modules and classes:
from MRdataset import import_dataset from mrQA import check_compliance
Given a dataset of MR images, (e.g. DICOM images), we create
MRdataset.base.Project
object. This can be achieved simply by
MRdataset.import_dataset
method, which requires a valid folder path.
For details on MRdataset
, please see its documentation.
data_root = '/home/user/datasets/ABCD' output_dir = '/home/user/MR_reports/' dataset = import_dataset(data_root=data_root, style='dicom', name='ABCD') check_compliance(dataset=dataset, output_dir=output_dir)
And that's it! Please note some important points:
- It will generate a corresponding HTML file in the
output_dir
which contains the complete report. style
denotes the specific format of neuroimaging dataset. For example, use dicom for DICOM datasets and bids for BIDS datasetsname
is an identifier which can be used to reload the the cached files later.If no name is specified, it uses a random identifier.