Kernel density estimation for 2D observational data, based on Koposov et al 2008. There are two kinds of statistics:
- 2 Gaussian kernel convolution
- Poisson distribution
Before starting density estimation, one shall first set up:
src/param.py
: parameters for density estimationsrc/param_patch_candidate.py
: parameters for preprocessing and summarywsdb.py
: permission for wsdb.
- Clean the work directory:
bash bashtools/clean.sh
- Preprocess a dwarf list (optional):
python preprocess.py
- Get access to the database and enter information in
wsdb.py
- Set up parameters in
src/param.py
, especially the following:IS_DWARF_LIST = False
# use joint listIS_DWARF_SPLIT_LIST = True
# use joint-split list
- Calculate density estimation:
python -W ignore main.py
(if using manual mode)python -W ignore main.py --name_dwarf "Fornax" --gc_size_pc 10
(if using the joint or joint-split dwarf list: names can be find in the txt files indwarfs/
)
- Summarize searching result with
python -W ignore summary.py
- If running step 4 and 5 on a cluster, slurm job scripts are provided:
bash bashtools/slurm-slurm.sh
# make sure the right input txtsbatch bashtools/slurm-summary.sh
# make sure all the KDE searches are done and then run this command