Skip to content

kuanweih/KDE-Detector

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

KDE-Detector

Kernel density estimation for 2D observational data, based on Koposov et al 2008. There are two kinds of statistics:

  • 2 Gaussian kernel convolution
  • Poisson distribution

Parameters and Database

Before starting density estimation, one shall first set up:

  • src/param.py: parameters for density estimation
  • src/param_patch_candidate.py: parameters for preprocessing and summary
  • wsdb.py: permission for wsdb.

How to use it:

  1. Clean the work directory: bash bashtools/clean.sh
  2. Preprocess a dwarf list (optional):
    python preprocess.py
  3. Get access to the database and enter information in wsdb.py
  4. Set up parameters in src/param.py, especially the following:
    • IS_DWARF_LIST = False # use joint list
    • IS_DWARF_SPLIT_LIST = True # use joint-split list
  5. Calculate density estimation:
    • python -W ignore main.py
      (if using manual mode)
    • python -W ignore main.py --name_dwarf "Fornax" --gc_size_pc 10
      (if using the joint or joint-split dwarf list: names can be find in the txt files in dwarfs/)
  6. Summarize searching result with python -W ignore summary.py
  7. If running step 4 and 5 on a cluster, slurm job scripts are provided:
    • bash bashtools/slurm-slurm.sh # make sure the right input txt
    • sbatch bashtools/slurm-summary.sh # make sure all the KDE searches are done and then run this command

About

KDE for 2D observational data

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published