Skip to content

Commit

Permalink
Merge branch 'kubeedge:main' into main
Browse files Browse the repository at this point in the history
  • Loading branch information
hsj576 authored Dec 14, 2023
2 parents 3b6ca2e + 7e3b191 commit d909271
Show file tree
Hide file tree
Showing 350 changed files with 25,942 additions and 25,907 deletions.
File renamed without changes.
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ Next, download pretrained model via [[google]](https://drive.google.com/file/d/1
We are now ready to run the ianvs for benchmarking pedestrian tracking on the MOT17 dataset.

```python
ianvs -f ./examples/pedestrian_tracking/multiedge_inference_bench/tracking_job.yaml
ianvs -f ./examples/MOT17/multiedge_inference_bench/pedestrian_tracking/tracking_job.yaml
```

The benchmarking process takes a few minutes and varies depending on devices.
Expand Down Expand Up @@ -78,7 +78,7 @@ Next, download pretrained model via [[google]](https://drive.google.com/drive/fo
We are now ready to run the ianvs for benchmarking pedestrian re-identification on the MOT17 dataset.

```python
ianvs -f ./examples/pedestrian_tracking/multiedge_inference_bench/reid_job.yaml
ianvs -f ./examples/MOT17/multiedge_inference_bench/pedestrian_tracking/reid_job.yaml
```

The benchmarking process takes a few minutes and varies depending on devices.
Expand All @@ -93,9 +93,9 @@ The final output might look like this:
## Step 3. Generate test report

```shell
python ./examples/pedestrian_tracking/multiedge_inference_bench/generate_reports.py \
-t ./examples/pedestrian_tracking/multiedge_inference_bench/tracking_job.yaml \
-r ./examples/pedestrian_tracking/multiedge_inference_bench/reid_job.yaml
python ./examples/MOT17/multiedge_inference_bench/pedestrian_tracking/generate_reports.py \
-t ./examples/MOT17/multiedge_inference_bench/pedestrian_tracking/tracking_job.yaml \
-r ./examples/MOT17/multiedge_inference_bench/pedestrian_tracking/reid_job.yaml
```

Finally, the report is generated under <Ianvs_HOME>/examples/pedestrian_tracking/multiedge_inference_bench/reports. You can also check the sample report under the current directory.
Expand Down
File renamed without changes.
File renamed without changes.
File renamed without changes.
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@ we have done that for you and the interested readers can refer to [testenv.yaml]

Related algorithm is also ready in this quick start.
``` shell
export PYTHONPATH=$PYTHONPATH:/ianvs/project/examples/curb-detection/lifelong_learning_bench/testalgorithms/rfnet/RFNet
export PYTHONPATH=$PYTHONPATH:/ianvs/project/examples/bdd/lifelong_learning_bench/curb-detection/testalgorithms/rfnet/RFNet
```

The URL address of this algorithm then should be filled in the configuration file ``algorithm.yaml``. In this quick
Expand Down Expand Up @@ -115,7 +115,7 @@ We are now ready to run the ianvs for benchmarking.

``` shell
cd /ianvs/project
ianvs -f examples/bdd/lifelong_learning_bench/benchmarkingjob.yaml
ianvs -f examples/bdd/lifelong_learning_bench/curb-detection/benchmarkingjob.yaml
```

Finally, the user can check the result of benchmarking on the console and also in the output path(
Expand Down
Original file line number Diff line number Diff line change
@@ -1,106 +1,106 @@
model = dict(
type='ImageClassifier',
backbone=dict(
type='ResNet',
depth=18,
num_stages=4,
out_indices=(3, ),
style='pytorch'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='MultiLabelLinearClsHead',
num_classes=20,
in_channels=512,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0, use_soft=True)))
dataset_type = 'BDD_Performance'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
train=dict(
type='BDD_Performance',
data_prefix='',
ann_file=
'/home/liyunzhe/Mobile-Inference/algorithm/labels/0129_real_world_multi_label_remo_xyxy_bdd_train.txt',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]),
val=dict(
type='BDD_Performance',
data_prefix='',
ann_file=
'/home/liyunzhe/Mobile-Inference/algorithm/labels/0129_real_world_multi_label_remo_xyxy_bdd_val.txt',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]),
test=dict(
type='BDD_Performance',
data_prefix='',
ann_file=
'/home/liyunzhe/Mobile-Inference/algorithm/labels/0129_real_world_multi_label_remo_xyxy_bdd_val.txt',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]))
evaluation = dict(interval=1, metric='mAP')
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
lr_config = dict(policy='step', step=[30, 60, 90])
runner = dict(type='EpochBasedRunner', max_epochs=100)
checkpoint_config = dict(interval=1)
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
work_dir = 'work_dirs/220208-bdd-best'
model = dict(
type='ImageClassifier',
backbone=dict(
type='ResNet',
depth=18,
num_stages=4,
out_indices=(3, ),
style='pytorch'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='MultiLabelLinearClsHead',
num_classes=20,
in_channels=512,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0, use_soft=True)))
dataset_type = 'BDD_Performance'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
train=dict(
type='BDD_Performance',
data_prefix='',
ann_file=
'/home/liyunzhe/Mobile-Inference/algorithm/labels/0129_real_world_multi_label_remo_xyxy_bdd_train.txt',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]),
val=dict(
type='BDD_Performance',
data_prefix='',
ann_file=
'/home/liyunzhe/Mobile-Inference/algorithm/labels/0129_real_world_multi_label_remo_xyxy_bdd_val.txt',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]),
test=dict(
type='BDD_Performance',
data_prefix='',
ann_file=
'/home/liyunzhe/Mobile-Inference/algorithm/labels/0129_real_world_multi_label_remo_xyxy_bdd_val.txt',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]))
evaluation = dict(interval=1, metric='mAP')
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
lr_config = dict(policy='step', step=[30, 60, 90])
runner = dict(type='EpochBasedRunner', max_epochs=100)
checkpoint_config = dict(interval=1)
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
work_dir = 'work_dirs/220208-bdd-best'
gpu_ids = range(0, 1)
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ we have done that for you and the interested readers can refer to [testenv.yaml]

Related algorithm is also ready in this quick start.
``` shell
export PYTHONPATH=$PYTHONPATH:/ianvs/project/ianvs/examples/curb-detection/lifelong_learning_bench/testalgorithms/rfnet/RFNet
export PYTHONPATH=$PYTHONPATH:/ianvs/project/ianvs/examples/cityscapes-synthia/lifelong_learning_bench/curb-detection/testalgorithms/rfnet/RFNet
```

The URL address of this algorithm then should be filled in the configuration file ``algorithm.yaml``. In this quick
Expand All @@ -80,7 +80,7 @@ We are now ready to run the ianvs for benchmarking.

``` shell
cd /ianvs/project/ianvs
ianvs -f examples/curb-detection/lifelong_learning_bench/benchmarkingjob.yaml
ianvs -f examples/cityscapes-synthia/lifelong_learning_bench/curb-detection/benchmarkingjob.yaml
```

Finally, the user can check the result of benchmarking on the console and also in the output path(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ Before using Ianvs, you might want to have the device ready:
- Internet connection for GitHub and pip, etc
- Python 3.6+ installed


In this example, we are using the Linux platform with Python 3.8.5. If you are using Windows, most steps should still apply but a few like commands and package requirements might be different.

## Step 1. Ianvs Preparation
Expand Down Expand Up @@ -65,15 +66,15 @@ we have done that for you and the interested readers can refer to [testenv.yaml]
Copy the index files of dataset.

``` shell
cp /ianvs/project/ianvs/examples/semantic_segmentation/lifelong_learning_bench/indexes/* /root/data/semantic_segmentation_dataset/
cp /ianvs/project/ianvs/examples/cityscapes-synthia/lifelong_learning_bench/semantic-segmentation/indexes/* /root/data/semantic_segmentation_dataset/
```

<!-- Please put the downloaded dataset on the above dataset path, e.g., `/ianvs/dataset`. One can transfer the dataset to the path, e.g., on a remote Linux system using [XFTP]. -->


Related algorithm is also ready in this quick start.
``` shell
export PYTHONPATH=$PYTHONPATH:/ianvs/project/ianvs/examples/semantic_segmentation/lifelong_learning_bench/testalgorithms/rfnet/RFNet
export PYTHONPATH=$PYTHONPATH:/ianvs/project/ianvs/examples/cityscapes-synthia/lifelong_learning_bench/semantic-segmentation/testalgorithms/rfnet/RFNet
```

The URL address of this algorithm then should be filled in the configuration file ``algorithm.yaml``. In this quick
Expand All @@ -85,7 +86,7 @@ We are now ready to run the ianvs for benchmarking.

``` shell
cd /ianvs/project/ianvs
ianvs -f examples/semantic_segmentation/lifelong_learning_bench/benchmarkingjob-smalltest.yaml
ianvs -f examples/cityscapes-synthia/lifelong_learning_bench/semantic-segmentation/benchmarkingjob-smalltest.yaml
```

Finally, the user can check the result of benchmarking on the console and also in the output path(
Expand Down
Loading

0 comments on commit d909271

Please sign in to comment.