Please install essential dependencies (see requirements.txt
)
dcm2nii
json5==0.8.5
jupyter==1.0.0
nibabel==2.5.1
numpy==1.15.1
opencv-python==4.1.1.26
Pillow==7.1.0
sacred==0.7.5
scikit-image==0.14.0
SimpleITK==1.2.3
torch==1.3.0
torchvision==0.4.1
Abdominal MRI
-
Download Combined Healthy Abdominal Organ Segmentation dataset and put the
/MR
folder under./data/CHAOST2/
directory -
Converting downloaded data (T2 fold) to
nii
files in 3D for the ease of reading
run ./data/CHAOST2/dcm_img_to_nii.sh
to convert dicom images to nifti files.
run ./data/CHAOST2/png_gth_to_nii.ipynp
to convert ground truth with png
format to nifti.
- Pre-processing downloaded images
run ./data/CHAOST2/image_normalize.ipynb
Abdominal CT
-
Download Synapse Multi-atlas Abdominal Segmentation dataset and put the
/img
and/label
folders under./data/SABS/
directory -
Intensity windowing
run ./data/SABS/intensity_normalization.ipynb
to apply abdominal window.
- Crop irrelavent emptry background and resample images
run ./data/SABS/resampling_and_roi.ipynb
Shared steps
- Build class-slice indexing for setting up experiments
run ./data/<CHAOST2/SABS>class_slice_index_gen.ipynb
You are highly welcomed to use this pre-processing pipeline in your own work for evaluating few-shot medical image segmentation in future. Please consider citing our paper (as well as the original sources of data) if you find this pipeline useful. Thanks!
run ./data_preprocessing/pseudolabel_gen.ipynb
. You might need to specify which dataset to use within the notebook.
run ./examples/train_ssl_abdominal_<mri/ct>.sh
and ./examples/test_ssl_abdominal_<mri/ct>.sh
This code is based on vanilla PANet (ICCV'19) by Kaixin Wang et al. The data augmentation tools are from Dr. Jo Schlemper. Should you have any further questions, please let us know. Thanks again for your interest.