forked from AILab-CVC/YOLO-World
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update: generate text embeddings for YOLO-World Embeddings
- Loading branch information
1 parent
b9c03ce
commit 398b76d
Showing
59 changed files
with
3,823 additions
and
115 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
160 changes: 160 additions & 0 deletions
160
configs/finetune_coco/yolo_world_v2_l_vlpan_bn_2e-4_80e_8gpus_finetune_coco.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
_base_ = ('../../third_party/mmyolo/configs/yolov8/' | ||
'yolov8_l_syncbn_fast_8xb16-500e_coco.py') | ||
custom_imports = dict(imports=['yolo_world'], allow_failed_imports=False) | ||
|
||
# hyper-parameters | ||
num_classes = 80 | ||
num_training_classes = 80 | ||
max_epochs = 80 # Maximum training epochs | ||
close_mosaic_epochs = 10 | ||
save_epoch_intervals = 5 | ||
text_channels = 512 | ||
neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2] | ||
neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32] | ||
base_lr = 2e-4 | ||
weight_decay = 0.05 | ||
train_batch_size_per_gpu = 16 | ||
load_from = 'pretrained_models/yolo_world_l_clip_t2i_bn_2e-3adamw_32xb16-100e_obj365v1_goldg_cc3mlite_train-ca93cd1f.pth' | ||
text_model_name = '../pretrained_models/clip-vit-base-patch32-projection' | ||
# text_model_name = 'openai/clip-vit-base-patch32' | ||
persistent_workers = False | ||
|
||
# model settings | ||
model = dict(type='YOLOWorldDetector', | ||
mm_neck=True, | ||
num_train_classes=num_training_classes, | ||
num_test_classes=num_classes, | ||
data_preprocessor=dict(type='YOLOWDetDataPreprocessor'), | ||
backbone=dict(_delete_=True, | ||
type='MultiModalYOLOBackbone', | ||
image_model={{_base_.model.backbone}}, | ||
text_model=dict(type='HuggingCLIPLanguageBackbone', | ||
model_name=text_model_name, | ||
frozen_modules=['all'])), | ||
neck=dict(type='YOLOWorldPAFPN', | ||
guide_channels=text_channels, | ||
embed_channels=neck_embed_channels, | ||
num_heads=neck_num_heads, | ||
block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv')), | ||
bbox_head=dict(type='YOLOWorldHead', | ||
head_module=dict( | ||
type='YOLOWorldHeadModule', | ||
use_bn_head=True, | ||
embed_dims=text_channels, | ||
num_classes=num_training_classes)), | ||
train_cfg=dict(assigner=dict(num_classes=num_training_classes))) | ||
|
||
# dataset settings | ||
text_transform = [ | ||
dict(type='RandomLoadText', | ||
num_neg_samples=(num_classes, num_classes), | ||
max_num_samples=num_training_classes, | ||
padding_to_max=True, | ||
padding_value=''), | ||
dict(type='mmdet.PackDetInputs', | ||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip', | ||
'flip_direction', 'texts')) | ||
] | ||
mosaic_affine_transform = [ | ||
dict(type='MultiModalMosaic', | ||
img_scale=_base_.img_scale, | ||
pad_val=114.0, | ||
pre_transform=_base_.pre_transform), | ||
dict( | ||
type='YOLOv5RandomAffine', | ||
max_rotate_degree=0.0, | ||
max_shear_degree=0.0, | ||
max_aspect_ratio=100., | ||
scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale), | ||
# img_scale is (width, height) | ||
border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2), | ||
border_val=(114, 114, 114)) | ||
] | ||
train_pipeline = [ | ||
*_base_.pre_transform, *mosaic_affine_transform, | ||
dict(type='YOLOv5MultiModalMixUp', | ||
prob=_base_.mixup_prob, | ||
pre_transform=[*_base_.pre_transform, *mosaic_affine_transform]), | ||
*_base_.last_transform[:-1], *text_transform | ||
] | ||
train_pipeline_stage2 = [*_base_.train_pipeline_stage2[:-1], *text_transform] | ||
|
||
coco_train_dataset = dict(_delete_=True, | ||
type='MultiModalDataset', | ||
dataset=dict( | ||
type='YOLOv5CocoDataset', | ||
data_root='data/coco', | ||
ann_file='annotations/instances_train2017.json', | ||
data_prefix=dict(img='train2017/'), | ||
filter_cfg=dict(filter_empty_gt=False, | ||
min_size=32)), | ||
class_text_path='data/texts/coco_class_texts.json', | ||
pipeline=train_pipeline) | ||
|
||
train_dataloader = dict(persistent_workers=persistent_workers, | ||
batch_size=train_batch_size_per_gpu, | ||
collate_fn=dict(type='yolow_collate'), | ||
dataset=coco_train_dataset) | ||
test_pipeline = [ | ||
*_base_.test_pipeline[:-1], | ||
dict(type='LoadText'), | ||
dict(type='mmdet.PackDetInputs', | ||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | ||
'scale_factor', 'pad_param', 'texts')) | ||
] | ||
coco_val_dataset = dict( | ||
_delete_=True, | ||
type='MultiModalDataset', | ||
dataset=dict(type='YOLOv5CocoDataset', | ||
data_root='data/coco', | ||
ann_file='annotations/instances_val2017.json', | ||
data_prefix=dict(img='val2017/'), | ||
filter_cfg=dict(filter_empty_gt=False, min_size=32)), | ||
class_text_path='data/texts/coco_class_texts.json', | ||
pipeline=test_pipeline) | ||
val_dataloader = dict(dataset=coco_val_dataset) | ||
test_dataloader = val_dataloader | ||
# training settings | ||
default_hooks = dict(param_scheduler=dict(scheduler_type='linear', | ||
lr_factor=0.01, | ||
max_epochs=max_epochs), | ||
checkpoint=dict(max_keep_ckpts=-1, | ||
save_best=None, | ||
interval=save_epoch_intervals)) | ||
custom_hooks = [ | ||
dict(type='EMAHook', | ||
ema_type='ExpMomentumEMA', | ||
momentum=0.0001, | ||
update_buffers=True, | ||
strict_load=False, | ||
priority=49), | ||
dict(type='mmdet.PipelineSwitchHook', | ||
switch_epoch=max_epochs - close_mosaic_epochs, | ||
switch_pipeline=train_pipeline_stage2) | ||
] | ||
train_cfg = dict(max_epochs=max_epochs, | ||
val_interval=5, | ||
dynamic_intervals=[((max_epochs - close_mosaic_epochs), | ||
_base_.val_interval_stage2)]) | ||
optim_wrapper = dict(optimizer=dict( | ||
_delete_=True, | ||
type='AdamW', | ||
lr=base_lr, | ||
weight_decay=weight_decay, | ||
batch_size_per_gpu=train_batch_size_per_gpu), | ||
paramwise_cfg=dict(bias_decay_mult=0.0, | ||
norm_decay_mult=0.0, | ||
custom_keys={ | ||
'backbone.text_model': | ||
dict(lr_mult=0.01), | ||
'logit_scale': | ||
dict(weight_decay=0.0) | ||
}), | ||
constructor='YOLOWv5OptimizerConstructor') | ||
|
||
# evaluation settings | ||
val_evaluator = dict(_delete_=True, | ||
type='mmdet.CocoMetric', | ||
proposal_nums=(100, 1, 10), | ||
ann_file='data/coco/annotations/instances_val2017.json', | ||
metric='bbox') |
160 changes: 160 additions & 0 deletions
160
configs/finetune_coco/yolo_world_v2_l_vlpan_bn_2e-4_80e_8gpus_finetune_coco_womixup.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
_base_ = ('../../third_party/mmyolo/configs/yolov8/' | ||
'yolov8_l_syncbn_fast_8xb16-500e_coco.py') | ||
custom_imports = dict(imports=['yolo_world'], allow_failed_imports=False) | ||
|
||
# hyper-parameters | ||
num_classes = 80 | ||
num_training_classes = 80 | ||
max_epochs = 80 # Maximum training epochs | ||
close_mosaic_epochs = 10 | ||
save_epoch_intervals = 5 | ||
text_channels = 512 | ||
neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2] | ||
neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32] | ||
base_lr = 2e-4 | ||
weight_decay = 0.05 | ||
train_batch_size_per_gpu = 16 | ||
load_from = 'pretrained_models/yolo_world_l_clip_t2i_bn_2e-3adamw_32xb16-100e_obj365v1_goldg_cc3mlite_train-ca93cd1f.pth' | ||
text_model_name = '../pretrained_models/clip-vit-base-patch32-projection' | ||
# text_model_name = 'openai/clip-vit-base-patch32' | ||
persistent_workers = False | ||
|
||
# model settings | ||
model = dict(type='YOLOWorldDetector', | ||
mm_neck=True, | ||
num_train_classes=num_training_classes, | ||
num_test_classes=num_classes, | ||
data_preprocessor=dict(type='YOLOWDetDataPreprocessor'), | ||
backbone=dict(_delete_=True, | ||
type='MultiModalYOLOBackbone', | ||
image_model={{_base_.model.backbone}}, | ||
text_model=dict(type='HuggingCLIPLanguageBackbone', | ||
model_name=text_model_name, | ||
frozen_modules=['all'])), | ||
neck=dict(type='YOLOWorldPAFPN', | ||
guide_channels=text_channels, | ||
embed_channels=neck_embed_channels, | ||
num_heads=neck_num_heads, | ||
block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv')), | ||
bbox_head=dict(type='YOLOWorldHead', | ||
head_module=dict( | ||
type='YOLOWorldHeadModule', | ||
use_bn_head=True, | ||
embed_dims=text_channels, | ||
num_classes=num_training_classes)), | ||
train_cfg=dict(assigner=dict(num_classes=num_training_classes))) | ||
|
||
# dataset settings | ||
text_transform = [ | ||
dict(type='RandomLoadText', | ||
num_neg_samples=(num_classes, num_classes), | ||
max_num_samples=num_training_classes, | ||
padding_to_max=True, | ||
padding_value=''), | ||
dict(type='mmdet.PackDetInputs', | ||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip', | ||
'flip_direction', 'texts')) | ||
] | ||
mosaic_affine_transform = [ | ||
dict(type='MultiModalMosaic', | ||
img_scale=_base_.img_scale, | ||
pad_val=114.0, | ||
pre_transform=_base_.pre_transform), | ||
dict( | ||
type='YOLOv5RandomAffine', | ||
max_rotate_degree=0.0, | ||
max_shear_degree=0.0, | ||
max_aspect_ratio=100., | ||
scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale), | ||
# img_scale is (width, height) | ||
border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2), | ||
border_val=(114, 114, 114)) | ||
] | ||
train_pipeline = [ | ||
*_base_.pre_transform, *mosaic_affine_transform, | ||
# dict(type='YOLOv5MultiModalMixUp', | ||
# prob=_base_.mixup_prob, | ||
# pre_transform=[*_base_.pre_transform, *mosaic_affine_transform]), | ||
*_base_.last_transform[:-1], *text_transform | ||
] | ||
train_pipeline_stage2 = [*_base_.train_pipeline_stage2[:-1], *text_transform] | ||
|
||
coco_train_dataset = dict(_delete_=True, | ||
type='MultiModalDataset', | ||
dataset=dict( | ||
type='YOLOv5CocoDataset', | ||
data_root='data/coco', | ||
ann_file='annotations/instances_train2017.json', | ||
data_prefix=dict(img='train2017/'), | ||
filter_cfg=dict(filter_empty_gt=False, | ||
min_size=32)), | ||
class_text_path='data/texts/coco_class_texts.json', | ||
pipeline=train_pipeline) | ||
|
||
train_dataloader = dict(persistent_workers=persistent_workers, | ||
batch_size=train_batch_size_per_gpu, | ||
collate_fn=dict(type='yolow_collate'), | ||
dataset=coco_train_dataset) | ||
test_pipeline = [ | ||
*_base_.test_pipeline[:-1], | ||
dict(type='LoadText'), | ||
dict(type='mmdet.PackDetInputs', | ||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | ||
'scale_factor', 'pad_param', 'texts')) | ||
] | ||
coco_val_dataset = dict( | ||
_delete_=True, | ||
type='MultiModalDataset', | ||
dataset=dict(type='YOLOv5CocoDataset', | ||
data_root='data/coco', | ||
ann_file='annotations/instances_val2017.json', | ||
data_prefix=dict(img='val2017/'), | ||
filter_cfg=dict(filter_empty_gt=False, min_size=32)), | ||
class_text_path='data/texts/coco_class_texts.json', | ||
pipeline=test_pipeline) | ||
val_dataloader = dict(dataset=coco_val_dataset) | ||
test_dataloader = val_dataloader | ||
# training settings | ||
default_hooks = dict(param_scheduler=dict(scheduler_type='linear', | ||
lr_factor=0.01, | ||
max_epochs=max_epochs), | ||
checkpoint=dict(max_keep_ckpts=-1, | ||
save_best=None, | ||
interval=save_epoch_intervals)) | ||
custom_hooks = [ | ||
dict(type='EMAHook', | ||
ema_type='ExpMomentumEMA', | ||
momentum=0.0001, | ||
update_buffers=True, | ||
strict_load=False, | ||
priority=49), | ||
dict(type='mmdet.PipelineSwitchHook', | ||
switch_epoch=max_epochs - close_mosaic_epochs, | ||
switch_pipeline=train_pipeline_stage2) | ||
] | ||
train_cfg = dict(max_epochs=max_epochs, | ||
val_interval=5, | ||
dynamic_intervals=[((max_epochs - close_mosaic_epochs), | ||
_base_.val_interval_stage2)]) | ||
optim_wrapper = dict(optimizer=dict( | ||
_delete_=True, | ||
type='AdamW', | ||
lr=base_lr, | ||
weight_decay=weight_decay, | ||
batch_size_per_gpu=train_batch_size_per_gpu), | ||
paramwise_cfg=dict(bias_decay_mult=0.0, | ||
norm_decay_mult=0.0, | ||
custom_keys={ | ||
'backbone.text_model': | ||
dict(lr_mult=0.01), | ||
'logit_scale': | ||
dict(weight_decay=0.0) | ||
}), | ||
constructor='YOLOWv5OptimizerConstructor') | ||
|
||
# evaluation settings | ||
val_evaluator = dict(_delete_=True, | ||
type='mmdet.CocoMetric', | ||
proposal_nums=(100, 1, 10), | ||
ann_file='data/coco/annotations/instances_val2017.json', | ||
metric='bbox') |
Oops, something went wrong.